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Figure 1: A mobile device with an omni-directional camera can capture a wide range of information about the user, including
user’s hand, body, and the surroundings. This allows various sensing techniques, which enable novel applications for mobile
interaction, including danger detection while on the move, body pose for virtual avatar, spatial gestures for gaming, and more.

ABSTRACT
An omni-directional (360°) camera captures the entire viewing
sphere surrounding its optical center. Such cameras are growing in
use to create highly immersive content and viewing experiences.
When such a camera is held by a user, the view includes the user’s
hand grip, finger, body pose, face, and the surrounding environment,
providing a complete understanding of the visual world and context
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around it. This capability opens up numerous possibilities for rich
mobile input sensing. In OmniSense, we explore the broad input
design space for mobile devices with a built-in omni-directional
camera and broadly categorize them into three sensing pillars: i)
near device ii) around device and iii) surrounding device. In addi-
tion we explore potential use cases and applications that leverage
these sensing capabilities to solve user needs. Following this, we
develop a working system to put these concepts into action, by
leveraging these sensing capabilities to enable potential use cases
and applications. We studied the system in a technical evaluation
and a preliminary user study to gain initial feedback and insights.
Collectively these techniques illustrate how a single, omni-purpose
sensor on a mobile device affords many compelling ways to enable
expressive input, while also affording a broad range of novel appli-
cations that improve user experience during mobile interaction.
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1 INTRODUCTION
Omni-directional (commonly known as 360°) cameras are used in
various ways [31] from photography to capturing experiences. The
rising trend of virtual reality (VR) and the increasing desire to
capture and view media content in a more immersive and wider
format have driven further interest in these cameras. A 360° camera
is able to capture not only 2D content, but a 360-degree surrounding
content with an omni-directional field of view. This has a number
of advantages such as capturing many people in the scene without
missing out anyone or any object of interest. It is also much easier
for users to capture image and video content in any angle, without
requiring them to aim [26, 30] with a viewfinder.

Due to growing demand, mobile 360° camera products are now
common in the consumer market. Consumer products such as the
Ricoh Theta, Insta360 and GoPro Max are widely available (Fig-
ure 2). In parallel to these developments, modern smartphones are
increasingly equipped with multiple cameras with wide apertures
and viewing angles. Indeed, there are existing smartphones with
built-in 360° cameras such as the Acer Holo360 and Protruly se-
ries (Figure 2 (bottom)). At present, the more popular hardware
manifestation of this relies on a pluggable 360° camera module for
a smartphone such as the Insta360 Air, Essential 360 or Huawei
Envizion 360 (Figure 2). As such, we can envision a multi-camera
software or dedicated 360° camera hardware solution developing
in the mobile phone marketplace. The emergence of such cameras
presents a platform for novel types of sensing technologies for
mobile interaction, which we explore further in this paper.

While typical uses of such cameras focus on capturing image
and video content, in this exploration we ask the question: what
kind of input sensing and interaction techniques can be enabled if
there is an omni-directional camera on a mobile device, such as a
smartphone or a tablet? From the camera’s point of view, it can
capture the user’s hand, finger, body, face, leg, and other objects in
the surrounding environment, when the device is held in one’s hand
(Figure 1 and 3). It can also capture the surface where it is placed,
whether on a desk or a charging dock, and activity that happened
in the surrounding. Based on these observations, we suggest that
omni-directional camera can afford many existing and novel input
techniques, using just a single sensor along with standard computer
vision techniques. Importantly, with the 360° field of view, it does
not require the user to specifically orient the camera to point or
focus on specific objects. It works in any orientation.

Figure 2: Example 360° cameras available on the consumer
market. From top-left: Ricoh Theta S, Insta360 OneX2, GoPro
Max 360, Insta360 Air, Huawei Envizion 360, Essential 360
camera module, Acer Holo360, Protruly V10S, D7 and V11S.

These research questions give rise to our name for this approach,
namely OmniSense. According to the Oxford dictionary, “Omni”
means “of all things”, and in “OmniSense” we take an exploratory
approach to researching the potential of such sensing techniques
to realize a wide range of input capabilities that are afforded by
a 360° camera. Our goal is to chart the extent of the design space
that such sensing affords us. Overall, we contribute three pillars of
input sensing capabilities: i) near device interaction (e.g., which
hand, which finger, back of the device or 3D fingertip), ii) around
device interaction (e.g., body pose, hand pose, spatial gesture,
proximity or leg), iii) surrounding device and context-aware
sensing (e.g., environment, human presence, in-car, tabletop or
tablet). Such sensing capabilities provide the opportunity to support
a range of real-world scenarios and to develop various applications.
Following this, we implement a working system, using a built-in
360° camera, to put these concepts into action. We select a large
number of promising applications to implement and demonstrate
the variety of interactions supported by our solution.

Some, but not all of the ideas presented here have been indepen-
dently explored in prior work. However, to the best of our knowl-
edge, none of the prior work can enable an all-in-one, omni-purpose
sensing with only a single sensor. By contrast, we demonstrate that
a single, built-in 360° camera, can achieve all these sensing capa-
bilities and enable novel use cases. These differences emphasize
our contributions which go beyond previous work by integrating
multiple sensing dimensions to enable an all-in-one, omni-purpose
sensing that forms the foundation of OmniSense, in particular, the
exploration of broader design space and the technical implementa-
tion on off-the-shelf hardware.

Our systematic literature review has highlighted a number of
common device usage scenarios and envisioned use cases for on,
around and mobile environment interactions. This provides a rich
array of interaction patterns, from which we can distill a set of ba-
sic interaction primitives. The re-combination of these primitives,
in various scenarios, allows us to construct a rich array of new
techniques and applications. To explore these techniques and appli-
cations, we conduct a technical evaluation and a preliminary user
study to gain initial insight and user feedback, which will inform
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future research and developments. In broad terms, this paper pro-
vides an in-depth exploration of a new class of mobile interaction
techniques with omni-directional sensing. Our contributions are
therefore multi-fold and can be summarized as follows:

• Comprehensive exploration of using a built-in 360° camera
on a mobile device to enable novel input sensing and interac-
tion techniques for mobile interaction, and the exploration
of design space, scenarios, user needs and use cases.

• Implementation of a functional, real-time prototype using
actual mobile devices with a built-in 360° camera, covering
many of the representative sensing capabilities and use cases,
demonstrating the technical feasibility of our proposed in-
teractions. In addition, we created video examples for the
remaining prototypes.

• A technical evaluation of the sensing results and a prelimi-
nary user study to gather initial feedback and insights.

• Our workaround method based on screen capture will enable
other researchers to work with 360° cameras even without
API access, that is typically not provided by manufacturers.

In summary, we leverage the 360° camera as an omni-purpose
sensor for enabling novel input and interaction techniques on mo-
bile devices, by pushing the boundary of what is capable of a single,
built-in sensor, going beyond previous work on peripheral sensing.

2 RELATEDWORK
Our OmniSense design space is developed from an analysis of prior
literature in mobile sensing, input techniques and 360° camera
research within the field of HCI. This study of existing work high-
lights the gaps that exist in the literature, where there is limited
availability of solutions that allows continuous sensing of multiple
modalities, as shown in comparison Table 1.

2.1 Input Sensing on Mobile Device
Improving interaction on mobile devices through novel sensing
has been an active research area, where an extensive review can be
found in [35]. Here we focus on the five main areas that are highly
related to our work, including i) on and above display interaction, ii)
back-of-device interaction, iii) around device interaction, iv) around
body interaction and v) surrounding and environmental sensing.

i) On and Above Display — First, researchers have augmented
input on and above the display to enable more expressive interac-
tion, by recognizing which finger is touching the screen [20, 21,
51, 73, 78], the finger angle [70], the hand pose [2, 51] or the hov-
ering finger [14, 24, 73, 74]. Different sensors such as a capacitive
sensor [24, 70], depth camera [14], prism [74] or panoramic lens
attachment [73] have been used to enable such capabilities.

ii) Back-of-Device — Researchers also leveraged the space at the
back of the device [6, 17, 58] to enable gestures such as back tapping,
swiping or scrolling input. Simple tapping can be detected using a
built-in accelerometer [27], but other more complex gestures such
as swiping or scrolling require adding hardware such as mirror
[66], ring [72] or touch sensor [6].

iii) Around Device — A wider space around the device can be
useful for sensing how the device is handled by the user [16, 44, 65,
76, 77], the gripping force [53, 61] or where the fingers are [37]. It

Table 1: Comparison with related work. OmniSense supports
all sensing capabilities with only a single, built-in sensor.
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   Sensor and Hardware
PreTouch [24]   Custom capacitive sensor
TouchPose [2]   Capacitive touchscreen
Air+Touch [14]   Depth camera
HandSee [74]   Prism attachment

SurroundSee [73]     Panoramic lens attachment
GripSense [16] HandSense [65]  Gyroscope, capacitive sensor

InfiniTouch [37]    Capacitive sensor
PenSight [47]    Wide angle camera

Back-Mirror [66]  Mirror attachment
Finger-Aware Shortcuts [78]  Mirror attachment

Porous Interfaces [20]  Optical sensor on finger
DeepFishEye [51]   Wide angle camera

TapSense [21]  Stethoscope
SideSight [8]  Infrared sensor

SurroundSense [5]  Accelerometer, camera, mic, WiFi
SurfaceSight [36]    360 LiDAR

Project Soli [42]   Radar
BISHARE [79]    Vicon mocap
AirPanes [22]    Vicon mocap

Around Body Interaction [13,14]  Vicon mocap, front camera, IMU
MultiFi [18]   ART outside-in tracking system
MeCap [1]    Spherical mirror attachment

EgoCap [54] Mo2Cap2 [71]   Wide angle camera(s) on headset
Cyclops [11]    Wide angle camera

JackIn Head [32]   Wide angle cameras
Mind The Tap [49]  OptiTrack

Putting Your Best Foot Forward [3]  Accelerometer on leg
Lv et al. [46]  Smartphone rear camera

CrashAlert [23]  Kinect depth camera
WalkSafe [64]  Smartphone rear camera

Director360 [26]   Handheld 360 camera
HindSight [57]  360 camera on helmet

Hand with Sensing Sphere [4]   360 camera on back of hand
OddEyeCam [33]  Wide angle camera

MonoEye [28]   Ultra wide angle camera
BodyTrak [43]  Wide angle camera on hand
Hori et al. [25]  360 camera on hand

OmniSense      360 camera (built-in or add-on)

is also possible to track the non-gripping hand interacting around
[22, 42, 79] or beside [8] the device using spatial or surface gestures.

iv) Around Body — The even larger space around the body,
including the distance and position of the device relative to the body,
can be used for input and interaction [12, 13, 18], such as enabling
virtual shelves [39], map navigation [33] or proximity-based screen
rotation [73]. Interaction techniques based on leg gestures were
also proposed for when both hands are occupied [3, 46, 62].

v) Surrounding and Environment — Finally, sensing the sur-
rounding and environment not only expands the interaction space
but also enables context awareness, localization [5] and remote
gesture [73]. It is also useful for safety purposes, such as detecting
approaching vehicles [40, 64] or obstacles [23, 29] along the path.

Yet, all of the aforementioned methods either require new hard-
ware, or only support a small number of sensing capabilities when
using built-in sensors. None is able to offer an all-in-one approach
(Table 1). In contrast, OmniSense supports all major sensing capa-
bilities with a single 360° camera already present in smartphones.

2.2 Wide-angle and Omni-directional Camera
Using a wide-angle or omni-directional camera for enabling various
interaction techniques has been explored, especially in the HCI and
computer vision research communities. For example, researchers
have attached a wide-angle camera below a tablet [51] to track
fingers, on a stylus [47] to detect hand gestures or on top of a
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smartphone [33] for enabling around-body interaction. Researchers
have also explored placing awide-angle camera on the chest [11, 28],
headset [54, 71] or on the hand [43] for estimating body posture.

Similarly, 360° cameras are also widely used in research. For ex-
ample, Jokela et al. [31] conducted a field study on how people use
360° cameras. There is also research work that allows object detec-
tion despite the strong distortion [59, 63]. A 360° camera can enable
video communication systems with a full spherical display [41] or
allows remote users to explore the immersive visual environment
of the local user [32]. Further, it can be attached to a cycling helmet
[57] and is able to warn cyclists of approaching vehicles outside
their field of view. It can be also attached on the hand [4, 25] to en-
able body-centered interactions. Finally, SurfaceSight [36] enables
touch, user, and object sensing using a rotating LiDAR.

Closest to our work, Surround-See [73] uses a 360° panoramic
lens attachment (Kogeto Dot) on the smartphone’s front camera.
It can recognize the device’s peripheral environment, objects, and
user activities, which facilitates novel use cases for mobile interac-
tion, many of which are also covered in OmniSense’s design space.
However, the camera lens used in Surround-See has a limited FoV
of 56° vertically, which misses significant sensing opportunities,
such as the area on the back of the device, the user’s face and lower
body, and major part of the environment (Figure 8). In this work, we
complement these missing capabilities and explore new use cases
that are only possible using the omni-directional FoV of 360° camera
in a commercial smartphone, along with technical evaluation.

Overall, while there have been independent works that explore
using an add-on wide-angle camera or 360° camera for sensing
input or objects, we are first to repurpose the built-in 360° camera
of a mobile device for sensing the wide extent of the users’ hand,
finger, body, face and environment to improve mobile interaction.

3 OMNISENSE DESIGN SPACE
The OmniSense design space provides a framework for the consid-
eration of new methods and input techniques, based on the premise
that ultra wide-angle or omni-directional cameras will become ubiq-
uitous in future mobile devices. The design space is largely inspired
by previous work on mobile sensing, where our analysis indicates
several gaps exist in the literature. For example, existing solutions
could only achieve limited sensing dimensions, and cannot support
sensing of multiple modalities, with most of them requiring custom
sensors or an infrastructure tracking system.

Although wide-angle cameras have been explored, there is a
large difference between wide-angle and the 360° camera we used.
Importantly, a 360° camera can capture more visual information
than a common wide-angle camera (Figure 3 (left)), such as the
gripping hand, finger interacting near the device, or on the back
of the device, the lower body part actions, arm motion and spatial
gestures, and etc. Hence, our goal is to explore the breadth of this
interconnected design space, going beyond single-point solutions.

OmniSense Input Sensing is a family of sensing capabilities
for omni-directional cameras, owing to the uniqueness of such
cameras which allows sensing of a broad range of inputs that are
broadly categorized into three pillars, i) near the device (contact
and proximate), ii) around the device (body, hand, face, leg) and
iii) surrounding the device (environment, context, surface). Note,

user actions and activities can encompass one or multiple sensing
pillars, as shown in Figure 3, where transitioning between them
opens up a further range of novel interactions and applications.

OmniSense User Needs and Use Cases is the rationale for
the proposed use cases and applications drawn from OmniSense’s
design space. The interconnected design space affords us the op-
portunity to explore a wide range of techniques, applications, and
scenarios, while considering emerging user needs and issues in
using mobile devices. For example, each use case corresponds to
solving user needs, using either single or combinations of sensing
dimensions, which we illustrate in the following sections. While a
use case that includes a single sensing dimension demonstrates the
feasibility of a single-point example, a use case that leveraged multi-
ple sensing dimensions unleashes the true potential of OmniSense.

In the following sections, we first discuss what type of sensing
capabilities can be achieved, and categorize them into three major
pillars. Then, we discuss what applications and scenarios can be
enabled and realized with such sensing. Note that some use cases
trace through the design space, drawing on multiple sensing dimen-
sions. From this, we then implement interactive prototypes that
were designed to explore and characterize a variety of interaction
techniques across the proposed design space.

While our focus here is on a smartphone, we suggest these tech-
niques are not limited to just smartphones, but also applicable to
other form factors, such as standalone handheld 360° cameras or
tablets. In fact, newer standalone 360° cameras are adopting many
aspects of a smartphone, e.g., some current generation 360° cam-
eras are running a smartphone OS internally (Ricoh Theta and Acer
Holo360 use Android OS). While some are equipped with tiny color
touchscreens (GoPro Max, Insta360 X3), which can be difficult to
operate due to the fat finger problem.

3.1 Input Sensing Dimensions and Capabilities
(What can be sensed?)

By considering interaction techniques through the lens of 360°
imagery, what information can the camera capture? As depicted in
Figure 3 (left), we can observe that the gripping hand and fingers
are always visible when the user holds the device. The non-gripping
hand is also visible when the user interacts with the screen using
two hands, either touching, hovering, or gesturing above the screen.
Owing to the wide field of view, the user’s body, face, arm, and legs
are also visible most of the time, near the optical center. When the
device is resting flat on a surface (e.g., desk) or mounted (e.g., phone
charger), the surrounding surface and environment are also clearly
visible. Based on these observations, we can postulate that various
objects of interest and activities can be tracked with computer
vision techniques. Here we discuss these objects in terms of three
major pillars, by walking through each example.

Note: Later in Section 4 (Implementation), we show functional pro-
totypes for most of the representative techniques and applications
described here (highlighted in Bold). For the remaining, we created
video examples and mock-up videos by applying the sensing tech-
niques offline (e.g., post-process with OpenPose). These are underlined.

3.1.1 Near Device Interaction
At the near device level — the space proximate to the device

contains detailed information about the user’s gripping hand and
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Figure 3: The OmniSense design space: (360° camera view) what the camera can see, from different perspectives such as near,
around and surrounding devices. (Sensing dimensions) what the system can sense, detect and recognize. (User needs) several
representative users needs that OmniSense can address. (Use cases) what type of use cases and applications can be enabled.

finger. For example, OmniSense can detect the grip handedness
(which hand is holding the device or both hands) (Figure 1.1
& 1.4) [16] or the grip type (firm or loose). OmniSense can track
the thumb hovering above the screen (Z-height, speed of tap)
(Figure 1.7) [24] or the fingers on the back-of-device (back-
tapping, swiping) (Figure 1.2) [37, 58]. OmniSense can also track
the 3D location of the finger (Figure 1.5) [74] of the other hand,
including the hovering state, pre- and post-touch gesture [14, 24],
and speed of tap. OmniSense can also recognizewhich part of the
finger (index, middle, knuckle) or whether a stylus (Figure
4d) [21, 73] is being used to touch the screen.

3.1.2 Around Device Interaction
At this level — the space around the device expands the inter-

action area beyond the screen’s boundaries which contains infor-
mation about the user’s body. OmniSense can detect full body
pose (Figure 1f & 1g) [9], which includes the body posture (stand-
ing or sitting) and state (walking or running), leg gesture (Figure
1.3) [3], along with head and gaze direction and facial features
(expression, mood) (Figure 5e). Similar to Surround-See [73], Om-
niSense can also track the non-gripping hand’s spatial move-
ment around the device (gesture, hand pose, pointing direction)
(Figure 1.8) [22, 79] or touching the face (Figure 1.9) [45]. Finally,
the camera can measure the device’s spatial relationship to the
body (proximity, orientation) (Figure 1.6) [13, 18, 73].

3.1.3 Surrounding Device and Context Aware Sensing
At this level — the extended, large area surrounding the device,

including the environment, context and the surface where the de-
vice is resting can be sensed, which were explored in Surround-See
[73]. For example, when held by a user who is on the move, Om-
niSense can detect various objects in front of the users, such as
approaching cars, humans and obstacles (Figure 1a). OmniSense
can sense the context, such as which room (bedroom or lecture hall)
[5, 73] or which vehicle (car or train) the user is currently residing

in (Figure 1b). Owing to the omni-directional field of view, it can
also recognize landmark buildings (e.g., AR StreetView) or localize
indoor positions even when the device is lowered. This does not re-
quire the users to raise the device for point-and-shoot, hence lower
cognitive load while on the move. When the device is resting on a
flat surface (e.g., a desk), or being mounted (e.g., phone charger),
it can detect various objects (e.g., food, tableware, stationery,
finger) (Figure 1d & 1h) or human actions (activity monitoring,
in-car gesture) (Figure 1c, 1e & 1i) [73] surrounding the device.

3.2 User Needs and Use Cases
The sensing techniques and methods described thus far operate
in an isolated fashion (recognizing which hand, which finger, etc.)
without considering use cases. However, our aim is to draw together
a holistic suite of interaction techniques across the three pillars of
our design space, that can actually address user needs. Hence, in
this section, our goal is to explore and enable various applications
and scenarios that can improve mobile interaction, in which some
scenarios may use one or more pillars, as shown in Figure 3 (Use
cases). As these are better illustrated in a video, please refer to the
supplementary video for a demonstration of all the applications.

3.2.1 Expressive Single and Two-Handed Interaction
Currently, there remains several issues on using a mobile device,

such as limited one-hand reachability, fat thumb and occlusion
issue. Hence, these represent user needs that can be addressed by
OmniSense. OmniSense enables following use cases:

i) Adaptive UI — Knowing which hand is holding the phone
allows for the placement of UI elements intelligently [16]. For ex-
ample, a menu or virtual keyboard that resizes and adapts to hand-
edness and grip automatically, as shown in Figure 4 (a).

ii) Ad-lib Interface — Tracking the thumb’s hover state and
Z-height allow for an ad-lib interface [24]. For example, Figure 4
(b) demonstrates that the menu interface fades in when the thumb
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Figure 4: (a) Adaptive UI (keyboard) that adapts to handed-
ness. (b) Ad-lib interface where the menu interface fades in
when the thumb approaches. (c) Back-of-device tapping to
pull down the notification bar, sliding to adjust the volume.
(d) Seamless mode switching, touch from a different finger
will switch to different brush, eraser, thickness or trigger
menu. (e) 3D finger interaction where finger hovering can
preview messages or control scrolling speed.

approaches and fades out when the thumb moves away, so as to
not clutter the video content in a full-screen video player.

iii) Back-of-Device Interaction — Tracking the index finger
on the back-of-device [6] and its 2D location allow for triggering
smart actions. For example, tapping on the back of the device acts
as shortcut to launch applications, sliding vertically pulls down the
notification panel, while sliding horizontally on the back adjusts
the volume continuously, as shown in Figure 4 (c).

iv) Seamless Mode Switching — Recognizing which finger
or object is touching the screen (index, middle, knuckle or stylus)
[21, 78] allows for seamless mode switching. For example, in a paint
application, touching the screen with the index finger switches to
a brush whereas the middle finger switches to an eraser. A touch
by the knuckle calls out the color palette, while a stylus changes to
a thin brush. All of these work seamlessly without requiring the
user to open the menu and choose option, as shown in Figure 4 (d).

v) 3D Finger Interaction — Tracking the 3D location of the
finger above the screen allows for various Air+Touch [14] and Pre-
Touch [24] interaction. For example, users can preview a message
by hovering their finger on top of it, as shown in Figure 4 (e). A
slow tap selects an item normally while a fast tap deletes it. By ma-
nipulating the Z-height of the hovering finger, the user can control
the scrolling speed of a list.

3.2.2 Bodily and Spatial Interaction
Indeed, a person can be very expressive with the use of gesture,

pose and body language to express various intentions. However,
these signals are currently not utilized by mobile interaction. Om-
niSense can capture these body signals to enable expressive bodily
and spatial interaction in various applications, such as:

i) VR Video Avatar Controller — Tracking the full body pose
and facial features allow for immersive interaction and experience
(e.g., virtual avatar, virtual YouTuber). For example, in a video call
or live streaming, users can control a 3D virtual avatar using full
body movement and facial expression, as shown in Figure 5 (a).

Figure 5: (a) VR avatar control for video conferencing. (b)
Face touch detection and warning application. (c) Around
body interaction for zooming and panning a map based on
the device’s proximity and orientation to the user’s body. (d)
Leg gesture interaction, a dancing game similar to Dance
Dance Revolution. (e) Eye closed detection for automatically
dimming of screen. (f) Spatial gesture (hand throwing) detec-
tion. A good throw of a Poke ball captures the Pokemon!

ii) Face Touch Detection — Knowing the hand and body loca-
tion allows for on-body interaction. For example, the hand touching
the body parts or face can be detected [45] to enable mnemonic
body shortcut [19] or discreet interaction [38]. It can also give
a warning when users unconsciously touch their faces during a
pandemic, as shown in Figure 5 (b).

iii) Around Body Interaction — Knowing the device’s spatial
relationship to the user allows for around-body interaction [13, 73].
For example, users can vary the distance of the device to the body
for zooming, or alter the position and orientation of the device
relative to the body for panning a map, as shown in Figure 5 (c).

iv) Leg Gesture Interaction —When both hands are busy or
dirty, the legs are free to perform various inputs. Tracking the
user’s leg allows for leg gesture interaction [3, 46, 49]. A pie menu
of multiple selections can be performed by stepping one leg forward,
as shown in Figure 5 (d). Precise step counting is also possible.

v) Stay Awake and Shoulder Surfing Prevention — Tracking
the user’s eye gaze allows for intelligently adjusting the screen
content. For example, when the user is not looking at the screen,
the screen can be dimmed automatically to conserve battery, as
shown in Figure 5 (e). If the system detects any stranger other than
the owner who is peeking at the screen (e.g., shoulder surfing), the
system can automatically hide sensitive information on the screen
and warn the user.

vi) Spatial Gestures — Tracking the other hand interacting
around the device allows for spatial manipulation [22, 79] or point-
ing [73]. For example, in a game (e.g., Pokemon GO, basketball), a
user can perform real hand-throwing gestures rather than swiping
on the touchscreen, as shown in Figure 5 (f). Various shortcut com-
mands [47], such as changing the hand sign (C to copy, V to paste,
OK to enter) can also be enabled.

3.2.3 Surrounding and Context-Aware Interaction
The user’s surroundings and context contain much information

for realizing ubiquitous computing. Indeed, prior work such as
Surround-See [73] have explored capabilities such as recognizing
the device’s peripheral environment, objects and user activities in
vicinity to the device. OmniSense covers a full 360° FoV that enables
further unexplored use cases, such as:
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Figure 6: (a) Danger detection and prevention, it warns the user if there are approaching humans or cars. (b) Tabletop interaction:
cookpad. (c) Tablet interaction with color stylus and hand pose shortcuts. (d) Context-aware sensing by recognizing the
background environment, such as lecture room, coffee shop or in-car. (e) Various events happening inside a car can be detected,
including seat occupancy, seat belt reminder, hands-on steering wheel detection, using a smartphone, drowsiness, and hand
gestures for infotainment control. (f) Controlling smart home appliances with a simple finger-pointing gesture. (g) In a meeting
room, the remote attendee has a full view of the room and all local attendees, plus detection of the active speaker.

i) Danger Detection — Understanding the surrounding allows
for danger detection and prevention [23, 64]. For example, it is dan-
gerous to keep looking at the phone screen and not paying attention
to the road while on the move, commonly known as smartphone
zombies. Since the camera has a full view of the environment, such
that it can provide a warning to the user if it detects obstacles (an ap-
proaching car, pole, or human), as shown in Figure 6 (a). Especially
during the pandemic era, it supports practicing social distancing
where people are supposed to stay at least two meters away.

ii) Tabletop, Tablet, and Stylus — Detecting the objects sur-
rounding the device when it is resting on a surface allows for
various tabletop applications. For example, it can enable various
board games or tangible interaction using real-world objects [52]
for input. In a kitchen scenario, a cookpad application recognizes
types of food in a bowl and estimates the calorie amount, while
also suggesting recipes. Moving a mug into position sets a timer,
which the duration is based on its location, as shown in Figure 6
(b). In addition, it can track the user’s finger and allow multi-touch
interaction on a large surface [8, 36]. The color of a stylus can be
automatically detected for changing the virtual brush’s color, while
hand pose can be recognized to draw different shapes (fist for circle,
palm for square), as shown in Figure 6 (c) [47].

iii) Context Awareness — Understanding the surrounding con-
text also allows for context-aware sensing and interaction. For
example, the system can recognize which room (office, cafeteria,
bedroom) or which transport vehicle (car, train, flight) the user is
currently residing in, and then automatically switches into different
modes, as shown in Figure 6 (d). For example, in an office, the phone
will switch to silence mode whereas, in a bedroom, it will set an
alarm for the next day. In a personal car, it will launch a navigation
application whereas in a flight it will switch to flight mode.

iv) In-Car Scenario — Tracking various events happening inside
a car is a very compelling use case. This includes detecting the num-
ber of passengers and seat occupancy, monitoring driver attention
and drowsiness, reminding about unfastened seat belt, warning if
hands not handling the steering wheel, detecting hand gestures for
controlling infotainment system, detecting child presence, monitor-
ing various vital signs (respiration, heart rate), and finally, capturing
fun in-car moments automatically, as shown in Figure 6 (e).

v) Smart Home —When the phone rests on a desk or sofa, it can
still track the user’s hand and the pointing gesture from a distance.
For example, in a smart home scenario, the user can control various
appliances just by pointing at them and perform simple gestures
[73], while sitting comfortably on the sofa, as shown in Figure 6
(f). It also supports monitoring various human activities, such as
if someone entered or leave the room, the user’s sitting posture,
counting the reps of an exercise, or monitoring how long the user
has been using the PC without resting.

vi) Conference Call — In a conference call, it provides a panoramic
overview of the entire meeting site [55], recognize all the attendees
by name, and detect the active speaker based on detected mouth
movement or hand gesture, as shown in Figure 6 (g).

4 IMPLEMENTATION
Translating this broad idea into a practical all-in-one system entails
a range of challenges. We created functional prototypes for most
of the representative techniques and applications described in the
previous section, which are used in the live demo during user study.

Owing to the tremendous advancement in computer vision tech-
niques in recent years, many of the proposed sensing techniques we
outlined in this paper can be implemented using mainstream and
state-of-the-art (SOTA) techniques, such as convolutional neural
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Figure 7: (left) Equirectangular image is converted into multiple perspectives, focusing on different regions of interest, using a
corresponding detection module. (middle) body pose & finger (right) approaching the car in the environment is detected.

networks (CNN). Since this paper is focusing on exploration rather
than exhaustive implementation and optimization, we consider our
implementations as baseline, where future improvement is possible.

4.1 Hardware
Throughout our research, we have investigated a few iterations of
hardware prototypes, as shown in Figure 8. Initially, we hot-glue
a standalone 360° camera (Ricoh Theta S) on top of a smartphone.
This prototype allows high-quality images to be streamed to a PC
in real-time using a USB cable but it was uncomfortable to hold.

Figure 8: Various hardware we investigated in this work,
including (left) camera hot-glued to a smartphone, (middle)
pluggable USB camera modules and lens attachment and
(right) smartphones with built-in 360° camera.

Next, we explore other, more practical form-factors. The most
popular realization of this is the various plug-in 360° camera mod-
ules available for smartphones, such as the Huawei and Essential
(Figure 8 (middle)). Unfortunately, the manufacturers do not pro-
vide API to access the camera image. Next, the low-cost Kogeto Dot
lens attachment has a limited field of view of 56° vertically [73] and
is not able to see the back of device, face and leg. Therefore, it does
not fulfill our requirement for omni-purpose sensing. Lastly, we
strive to achieve the most “ready” form-factor, which we employ
actual smartphone with a built-in 360° camera, such as the Acer
Holo360 or Protruly smartphone. Specifically, the Protruly V10S
has a dimension of 16.3 cm x 7.4 cm, as shown in Figure 8 (right).
The body is 0.8 cm thick and the thickest part (including protruding
lens) is only 1.3 cm. Similarly, there is no API to access the camera
image. We mainly use the Protruly V10S smartphone in our data
collection, experiment and user study. For tablet use cases, we use
the Huawei Envizion 360 pluggable camera module with a tablet,
because a tablet with built-in 360° camera does not exist yet.

4.2 Software
In this subsection, we describe software and processing pipeline to
unwrap images, capture screens and detect objects.

4.2.1 Equirectangular Image
On the Protruly smartphone, the captured image or video is

saved locally in a 360-degree equirectangular format. We convert
the equirectangular image to multiple perspective images, each
focusing on a different region of interest (ROI) for a different pur-
pose, as shown in Figure 3 and 7. Then, for each ROI, we apply
a different detection module. First, for the handedness and finger
ROI, we apply four custom detection modules (described in the
next Subsection 4.3) which detect handedness, active finger, 2D
finger and 3D finger position. For the upper body and full body
ROI, we apply the body pose estimation module to extract body
joints information, which is further used for inferring body states
(e.g., standing vs. sitting, touching the face, eye blinked), as shown
in Figure 7 (middle). For the environment ROI, we apply an ob-
ject detection module to detect approaching obstacles (e.g., car or
human for danger detection) or nearby objects (e.g., mug or food
for tangible interaction), as shown in Figure 7 (right). While this
approach allows tracking bodies and objects in multiple regions
simultaneously, it does not allow for a live demonstration, because
the captured image is saved in the phone for later access, and there
is no API available to access the built-in 360° camera in real-time.

4.2.2 On-screen Fisheye Image Capture And Overlay
We circumvent the limitation of lack of API access with a novel

workaround, which is by using a real-time screen capture method
with Android debug bridge (ADB). By launching the preloaded stock
camera app, the screen renders the camera viewfinder preview in
spherical format. Our software then captures the screen content
(Figure 9) in real-time and forwards it to a remote PC for image
processing and machine learning, using either a USB cable or WiFi.

Field of View — Specifically, the main hardware we used (Pro-
truly V10S smartphone) has a screen resolution of 1920 x 1088
where the spherical preview area is 1088 x 1088 in pixels, with
approximately 220+ degree FoV that can be adjusted (drag to rotate
viewpoint, pinch to zoom). One downside of this screen capture
method is that it is limited to the fisheye view on the screen, rather
than the equirectangular format as described previously. Therefore,
our processing and recognition pipeline is redesigned to deal with
such limitations (e.g., barrel distortion) and built around it.

Opaque Overlay — To demonstrate a prototype system that
works in real-time, we need to capture the camera preview on the
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Figure 9: (left) Full-screen capture. (middle) For different use
cases, only certain areas are cropped and fed into a neural
network classifier. (right) Opaque overlay for rendering the
results received from edge device to the user.

screen while also rendering results to the user at the same time. For
this reason, we created an opaque overlay using Android service
to render results but reserved a transparent region at the center of
the spherical area to allow the camera view to be screen captured
(Figure 9). No rendering is allowed over this reserved region. We
then developed various applications and UI using the overlay. And
since the gripping hand and finger are always visible at the center
of the image, the transparent region is set to the center 600 x 600
pixels, which only occupied 17% of the total screen’s real estate,
where the remaining area can be used for rendering, as shown in
Figure 9. Furthermore, this cropped region is fed as input to the
neural network, which simplifies the machine learning task.

Distortion — Although this fisheye image has barrel distortion,
the user’s body is close to the center of the image where the distor-
tion is minimal, standard body pose tracking methods will work
without modification. In particular, we tried the OpenPose [9] li-
brary which worked very well for tracking the body, hand and face,
as shown in Figure 10 (a) fisheye.

Un-distortion — Nonetheless, to obtain optimal body pose re-
sults, we first unwrap the fisheye image and convert it to different
formats (perspective, equirectangular & cubemap), before apply-
ing body pose tracking. To calibrate, we took multiple chessboard
images from different angles, covering as wide the FoV as possible.
Then, we apply calibration using OpenCV and OCamCalib [56]
procedure, to extract parameters of the fisheye camera. From the
parameters, we generated a pixel-to-pixel conversion map for real-
time undistortion, which is applied for every new frame. Examples
of the body tracking results for different formats can be seen in
Figure 10. Fisheye has the most information, but the body size is
unbalanced, where the shoulder appears larger and the legs appear
shorter. Cubemap appears to strike a good balance, with minimal
information loss (leg slightly cropped when near to edge). In the
Perspective image, because the conversion causes high distortion
near the edge, we had to limit the FoV (approximately 140°). This
causes the leg to be cropped when it is extended. Equirectangular
looks good for themiddle part of the image, but is highly distorted at
the top and bottom part of the image. Further, detailed comparisons
are presented in Appendix A.

Figure 10: Comparison between different image formats for
body pose estimation. From left: fisheye, cubemap, perspec-
tive and equirectangular.

4.3 Deep Neural Network Architecture
Since there are no existing models for tracking hands and fingers
from the unique camera point of view in our setup, we collect
data and train convolutional neural networks from scratch. For the
reset, we adopt existing models such as OpenPose [9] for body pose
tracking, YOLOv4 [7] for object detection, and I3D [10] for activity
recognition. On average, all applications run at an interactive frame
rate (> 10 fps) on an Nvidia GTX1080 GPU.

4.3.1 Handedness and Active Finger Recognition
The recognition of handedness and active finger can be posed as

a classification task with a few classes. As the hand gripping the
phone and the finger touching the screen are always visible in the
center of the image, we crop only the center ROI (Figure 9) and fed
this as input to a neural network. We adopted the EfficientNet [60]
network architecture, as it achieves higher accuracy and efficiency
over existing architectures. Specifically, we chose EfficientNet-B4
[60] as it strikes a good balance between accuracy and speed. We
replace the last layer with another fully connected layer, using a
softmax activation function. Figure 11 shows example dataset.

Figure 11: Example dataset for handedness (top) and active
finger recognition (bottom). From top-left: right hand, left
hand, both hands, index finger, middle finger, knuckle and
stylus. Red boxes indicate the cropped region of interest.

4.3.2 2D and 3D Fingertip Tracking
There are existing methods that regress human 3D keypoints

from a single image [50, 69, 75], of which themost common ones use
heatmap-based regression. Yet, these approaches largely target a
single undistorted image. Different from the previous work on body
pose estimation, a finger captured by the 360° camera is distorted
and occasionally cropped due to its close distance to the camera,
thus a conventional method does not work well. Hence, in this
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paper, we trained a neural network using the dataset we collected,
to achieve faster inference time and obtain higher precision. Our
network architecture is shown in Figure 12.

For 2D fingertip tracking, we use a PoseResNet-like [69] encoder-
decoder-based convolutional network, which employs ResNet-50
as the backbone to regress 2D heatmaps of different fingertips of
both hands. This is similar to the approach used by Xu et al. [71].
Since the 2D regression here is a relatively simple task where the
fingertip is clearly shown in the camera viewwithout any occlusion,
we suggest a simple yet effective network such as the PoseResNet
[69] is sufficient for a baseline implementation, with the advantage
of reducing both training and inference time.

For 3D fingertip tracking, estimating the depth of a fingertip from
a 2D image is a challenging task, especially for a fisheye lens. Xu et
al. [71] succeeded in estimating the distance of body joints from a
head-mounted fisheye camera using another stream to estimate the
depth map, which is adapted to our case. To achieve better accuracy,
we performed a 2-level stacked training to estimate the depth both
from the 1st-level output and 2nd-level features, as shown in Figure
12. The network will output a 2D key point heatmap as well as a
3D depth map of the corresponding fingertip which we can extract
the 3D camera coordinates from.

Hereby, in the following experiment, we only collected data and
trained the network for estimating the three representative joints
that are mostly used in mobile interaction: the left thumb, left index,
and right index fingertip. Nonetheless, it is possible to expand this
tracking to other fingertips or even estimating a full-hand pose.
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Figure 12: Network architecture for fingertip tracking and
data collection setup using depth camera.

5 BASELINE TECHNICAL EVALUATION
We performed a baseline technical evaluation of OmniSense, fo-
cusing on detecting hand and finger state, to get a sense of the
accuracy and robustness of the system. Since the body pose and
object detection results are obtained using state-of-the-art methods
from the computer vision literature, we do not find it necessary to
evaluate them in this paper. Nonetheless, we examined different

un-distortion methods and how well they work with standard body
pose estimation model. Please see Appendix A for more details. For
each case included in this section, we collect a dataset with our
device (Protruly V10S), label them manually, train the respective
neural network model, and evaluate the result.

5.1 Handedness and Active Finger Recognition
• Handedness - Which hand is holding the phone? This consists
of three classes: left hand, right hand, and both hands.

• Active finger -Which finger is touching the screen? This consists
of four classes: index, middle, knuckle and stylus.

5.1.1 Data Collection
We collected data from five participants from a local campus

(mean age: 28.6, one female), for two sessions separated by a day.
Considering that different users may grip the phone differently,
and even a single user may grip the phone differently each time.
With this in mind, we designed our data collection procedure to
elicit such behaviors. For handedness recognition, participants were
asked to hold the phone with their natural and comfortable grip, as
if they are using the phone normally. They were asked to vary their
handedness and their gripping behavior slightly while walking
around the campus (both indoor and outdoor), as shown in Figure
11. For active finger recognition, participants were asked to hold
the phone with their left hand, while performing random finger
movements on the screen using the right hand’s index finger, middle
finger, knuckle or a stylus. 1500 images are collected for each case.
In total, there are 45000 images for handedness and 60000 images for
active finger recognition. We train the EfficientNet-B4 [60] network
(with pre-trained weights) with this dataset, for 30 epochs, using a
learning rate of 1e-5 and the Adam [34] optimizer.

5.1.2 Evaluation Procedure
We conducted both user-dependent and user-independent eval-

uations. For the user-dependent test, we take a single day’s data
for training, and the other day’s for testing, then repeat it for 2
folds. For the user-independent test, we take data from both days
but leave-1-user-out, train a model for each fold and test on the
remaining user data, for 5 folds.

5.1.3 Results and Discussion
For the handedness task, the accuracy is 99.55% (user-dependent)

and 98.98% (user-independent). For the active finger task, the ac-
curacy is 97.13% (user-dependent) and 96.12% (user-independent).
Overall, the classification results of both the handedness task and
active finger task are very accurate and robust, even across users
(over 96%). Both of these are rather simple tasks, with well-defined
crop area and small input size, owing to the fact that hand and fin-
gers are always visible at the center of image when user is holding
and interacting with the touchscreen.

5.2 2D and 3D Fingertip Tracking
• Left index finger touching the back-of-device and hovering
above it (2D regression, X, Y location of the fingertip).

• Left thumb touching the front screen and hovering above it (2D
regression, X, Y location of the fingertip).

• Right index finger touching the front screen and hovering above
it (3D regression, X, Y, Z location of the fingertip).
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Table 2: Results of 2D fingertip tracking in real-world and heatmap (HM) errors, and results in 3D and depth (Z-only) errors.

2D Fingertip General Leave-1-out
MAE (mm) Heatmap RMSE (×10−2) 2D-PCK MAE (mm) Heatmap RMSE (×10−2) 2D-PCK

Left Index 2.04 2.16 95.85% 2.78 2.97 92.40%
Left Thumb 2.31 2.00 96.72% 2.72 2.54 93.91%
3D Fingertip MAE (mm) Depth MAE (Z only, mm) 3D-PCK MAE (mm) Depth MAE (Z only, mm) 3D-PCK
Right Index 4.11 8.25 90.70% 5.46 10.80 89.93%

5.2.1 Data Collection
We collected data from five participants from a local campus

(mean age: 28.0, two females). For the left index finger and thumb,
we asked the participants to hold the phone with their comfort-
able grip. They were asked to perform random finger movements
while walking around a lab. In total, approximately 49,000 images
were collected. 2D (X, Y) location of the left thumb and left index
fingertip are annotated manually. For the right index finger, an
Intel RealSense depth camera is mounted (Figure 12) on the phone
only for collecting ground truth depth data, which is used for the
purpose of training the deep neural network. The depth camera is
not used during real-time inference and demonstration. Since the
depth camera is tethered to a PC, participants remain seated in front
of a green backdrop. In total, approximately 30,000 RGB and 30,000
depth images were collected. 3D (X, Y, Z) location of the right index
fingertip is annotated by the authors. The 2D heatmap is generated
from the XY coordinates using the Gaussian kernel, while the depth
map is generated based on the Z-value from a depth camera. All
training for the fingertip tracking uses a PyTorch framework, with
an initial learning rate of 1e-4, batch size of 64, and Adam [34]
optimizer with a multi-step learning rate.

Figure 13: Example results of 3D fingertip estimation. From
left: far, close, closer, hovering, failure case and 3rd party
(a person not in the dataset). The white point indicates the
fingertip position and the size of the points indicates the
inverse distance to the camera.

5.2.2 Evaluation Procedure
In both 2D and 3D evaluations, we evaluated a user-dependent

general accuracy and a cross-user validation (leave-1-user-out).
In the general evaluation, we trained a general model using data
from all participants while keeping 20% data randomly from each
participant for testing. On the other hand, in the leave-1-user-out
evaluation, we trained the network using 4 users’ data and evaluated
the remaining user, for 5 folds. This aims to study the cross-user
generalizability of the model. The results are shown in Table 2.

5.2.3 Metrics
We use a mean absolute error (MAE) as the evaluation metric for

the 2D real-world coordinates, of which the unit is in millimeters
(mm), similar to related work [51, 67]. To measure the difference
in heatmap result, we calculate the root mean square error (RMSE)
in pixel-scale to show the similarity of the predicted heatmap and
ground truth. We also include a Percentage of Correct Keypoint
(PCK)metric with a threshold of 15mm to represent amore intuitive
accuracy. On the other hand, for the 3D fingertip results, as shown
in Table 2 (bottom), there are two mean absolute errors (MAE) for
either the 3D coordinates or the Z-value only, where the units are
all in millimeters (mm). Additionally, the PCK becomes 3D-PCK
which is based on the average 3D Euclidean distance between the
estimated 3D fingertip position and the ground truth value.

5.2.4 Results and Discussion
For the fingertip tracking, the 2D results have an acceptable accu-

racy (MAE: Left Index 2.04 mm, Left Thumb 2.31 mm) in the general
models and a slightly larger error in cross-user models (MAE: Left
Index 2.78 mm, Left Thumb 2.72 mm), where we believe an average
error under 3 mm is sufficient for mobile interaction. For compari-
son, TouchPose [2] used a capacitive touchscreen to reconstruct full
hand poses and it showed around 10 mm of error when all fingers
are touching the screen (the evaluation setup is different from ours,
hence not a direct comparison). Our system tracks the 2D position
of only the thumb and index but achieved error of less than 3 mm
accordingly. Importantly, the small difference between general and
cross-user models indicates the generalizability to new users.

By contrast, the mean errors of coordinates in 3D tracking in-
crease noticeably (MAE: General 4.11 mm, Leave-1-out 5.46 mm).
This result is comparable with related work although the settings
are not identical. For instance, DeepFishEye [51] tracks five finger-
tips and yielded errors of ∼20 mm for both index and thumb on the
smartphone-sized screen. The depth (Z) value has a higher error
(MAE of Z-only: General 8.25 mm, Leave-1-out 10.80 mm) when
compared to the 2D results. This is because the depth (the distance
from the camera) is much more difficult to estimate (with an error of
8 mm∼10 mm), especially from a distorted, low-resolution fisheye
image. In fact, estimating precise depth information from only a 2D
image in real-time remains a challenging task in the CV literature.
In addition, the human labeling process may have contributed to
the increase in the error rate, especially when the finger is very near
to the camera, where a small imprecision in the human annotation
may lead to a large error offset. As we used a cropped ROI, when
the finger is extended to the extreme, it goes out of view and causes
a failure prediction (as shown in Figure 13). In 2D tracking, the
prediction jumps to other fingers while in 3D tracking it results in
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Figure 14: The subjective feedback of participants for each application. 1=Disagree strongly, 7=Agree strongly.

wrong depth estimation. This can be fixed by using a larger ROI, or
via filtering. Nevertheless, the overall 3D-PCK is around 90% which
means most of the estimated points are close to the ground truth
and we suggest that 5 mmmean 3D position error and 10 mmmean
depth error is acceptable for many use cases that do not require
high precision, such as i) grouping the hover areas based on zones
and ii) coarse finger gestures or iii) PreTouch [24] and Air+Touch
[14] style of interaction based on hover detection.

6 USER STUDY
To gather feedback and insight about our techniques and applica-
tions, we invited participants to try our system. In total, participants
tried 13 mini applications (Figure 4-6) spanning the three pillars of
the design space. For extra use cases such as the in-car scenario,
we created a video example that has actual sensing results over-
laid (e.g., OpenPose’s tracking of body, face and finger) and show
it to participants. Please refer to the main video figure and also
supplementary video for demonstrations of all applications.

6.1 Participants, Main Task and Protocol
We recruited ten participants from a local University campus (one
female, mean age: 28). None of these participants were from the
data collection sessions. Among them, nine participants knew about
360° cameras but only five participants have used one before.

We began the user study with an overall introduction, and then
an introduction to each of the prototype applications. Participants
were given the opportunity to freely try each application for as
long as they like, usually lasting one to five minutes for each. After
trying out each application, participants completed a questionnaire
with four questions on a 7-point Likert scale (Figure 14). Finally,
a short interview was conducted to gather feedback and insights

from the participants. They were asked about the most and least
favorite aspects of their experience, and any other comments they
had. The whole study lasted approximately 45 minutes. Participants
were given a free drink as a token of appreciation.

6.2 User Study Results and Discussion
Figure 14 shows the subjective feedback of participants regarding
the four questions. Results showed that most applications related to
the body and surroundings (Demo 7-14) were well received by the
participants, but less so for applications related to finger interaction
near the device (Demo 1-6).

From the interview, the danger detection (Demo 7) was voted as
the most desired application (six participants), followed by 3D list
scrolling (two participants). Many participants expressed a high
preference for danger detection, the reason being that it can only
be enabled with such a unique setup and it is the most “valuable”
feature. Two participants commented that they have seen the other
applications elsewhere, but danger detection is new and useful to
them. They further commented that the accuracy doesn’t need to
be 100% accurate as there is high potential from this aspect alone.

The VR video avatar (Demo 12) controller application was se-
lected as themost interesting application (six participants), followed
by the Pokemon GO (Demo 10) hand-throwing game (two partic-
ipants’ first choice and two participants’ second choice). Three
participants commented that the VR avatar application is fun. One
participant suggested that it is easy to become a VTuber by just
holding this phone and another participant commented that it is
convenient to just hold the phone within arm’s reach as there is no
need to setup a camera from afar. Regarding Pokemon GO, partici-
pants commented that this real hand-throwing gesture will benefit
some games. “Normally, you cannot play with your body, this is like
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an arcade game which will increase the fun of the game” (P8). An-
other participant believes that it will be more fun if there are more
variations of the throwing gestures (e.g., spinning the Poke ball).

On the other hand, there was a consensus (four participants)
that, many of the finger sensing techniques (Demo 1-6) are rather
gimmicky. Mainly, they commented that these finger sensing tech-
niques can be enabled by other sensors such as capacitive sensor
or radar, which will be more accurate. They see that it is possible
to sense the various finger input using 360° camera but they do not
think that it is the best solution, considering that other types of
sensors may be better. In addition, two participants commented
that using menu to switch modes is a well-established method,
hence there is no need to change to use a new, gimmicky method
to switch modes (Demo 1, which finger), which is more confusing.

Other concerns from participants include robustness of sensing,
occlusion problem, battery consumption, lack of usefulness of leg
interaction and doubt that smartphones with built-in 360° camera
will become mainstream. Surprisingly to us, participants did not
complain about the non-fullscreen overlay UIwe used to circumvent
the camera API limitation. Finally, one of the rewarding comments
was: “It’s cool to know that 360° has so many potentials” (P9), as this
is well-aligned with the goal of this exploratory research.

7 OVERALL DISCUSSION
OmniSense broadens our understanding of the types of interactions
users can perform on a mobile device with an omni-directional
camera. We have implemented functional prototypes that integrate
OmniSense’s multiple sensing capabilities to enable numerous pos-
sible applications and scenarios. From our experience in this inte-
gration and from the preliminary user study, we identified open
challenges and issues. For example, OmniSense techniques are pre-
ferred for body-based and surrounding-based interaction, but less
so for the near device interaction (hand and finger). Users found
body-based and surrounding-based interaction unique, fun and
useful. In contrast, they found near device interaction gimmicky
and some said there is no need for such new methods. They also
suggest that a customized sensor might be better in terms of robust-
ness and battery consumption (e.g., a capacitance sensor for hover
detection). Nonetheless, our exploratory research here is an initial
step to uncovering the potential of a single 360° camera for omni-
purpose sensing for improving mobile interaction. Optimization
and detailed comparison work are left for future work. By exploring
the breadth of design space and identifying the usability issues for
this new class of mobile interface, we hope that OmniSense can
empower users, researchers and manufacturers with an all-in-one
sensing solution spanning multiple sensing pillars, for enabling
novel applications in the pervasive mobile interaction.

7.1 Is 360° Camera Essential? Potential Solution
To Miniaturize 360° Camera Bump

With the increasing FoV of cameras on modern smartphones (120°
to 150°), do we require 360° camera for OmniSense? In fact, some
use cases that we proposed in this paper can be possible with just a
wide-angle camera. On the other hand, some use cases are simply
not possible with only 120° to 150° FoV, such as the near device

interaction (handedness, active finger and back-of-device). Further-
more, it is not possible to enable multiple use cases simultaneously
with small FoV. Thus, we suggest 360° camera is essential to achieve
omni-purpose sensing for multiple use cases as outlined here.

As a modern 360° camera uses two wide-angle lenses, there is a
stitch line due to the stitching of the two lenses. There is also a tiny
blind spot where the camera cannot see, which occurs for objects
very close to the center of two lenses. For example, the gripping
hand appears to be cut off when it rests on the bezel. Both of these
did not cause a major issue in detection, because the neural network
will be able to learn and adapt from these.

Perhaps a major concern for the adoption of 360° cameras in
modern smartphones is the size. Here, we suggest a potential solu-
tion to miniaturize it. In fact, under-display camera technology is
becoming matured nowadays. When this technology is combined
with a liquid lens that can be morphed on-demand (e.g., Tactus1),
we envision that it is possible to achieve a smartphone form factor
that looks no different than those available now, with a high screen
to body ratio and not losing screen space due to fisheye lens.

7.2 Body Pose Estimation Issues, Device
Placement And Orientation

For extracting body pose information, we used OpenPose [9] library
with a single camera, where the body joints information is 2D
only. Hence, it does not support true 3D spatial interaction. Other
approaches such as VNect [48] supports real-time 3D human pose
estimation with a single RGB camera, which we will experiment
with in future work.

In addition, the leg tracking was not robust enough for a smooth
leg gesture interaction experience. This is due to two factors: i)
occlusion — from the camera’s point of view, the hand holding
the phone occludes part of the body, causing the lower body to
appear as separated from the upper body. ii) shortened legs — as
the hand holding the phone is around the chest height, from the
camera’s point of view, the legs are further away and appear shorter
compared to the upper body. Both these factors cause difficulty
for robust leg tracking when using the standard OpenPose model,
which did not account for such issues. Nonetheless, we found that
fisheye distortion is not a major issue, because the body is usually
near the center of the image, as shown in Appendix A. We also
found that cubemap projection improves the pose tracking slightly
in some cases, but there is no clear winner between fisheye or
cubemap. Ideally, a solution to improve this issue is to fine-tune
the body pose estimation model with images collected from such
a high viewpoint (e.g., the annotated dataset from EgoCap [54] or
our dataset), which we leave for future work.

Our experiments were conducted where the users hold the phone
in front of their body, as if how they normally use a phone. However,
there will be occasions where the hand is lowered. While we did
not evaluate this condition, recent work by Lim et al. [43] and Hori
et al. [25] showed that it is possible to infer body pose using a wide
camera on the hand, pointing towards the body. We believe their
result is generalizable to our approach.

1Tactus Technology Tactile Touchscreen: https://www.youtube.com/watch?v=
JelhR2iPuw0

https://www.youtube.com/watch?v=JelhR2iPuw0
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7.3 Privacy Concern
The use of such an omni-directional camera presents a number
of privacy concerns. Such concerns have been addressed when
cameras have been incorporated elsewhere. For example, some
device manufacturers provide a physical kill-switch for a laptop
camera. Similarly, this physical kill-switch approach can be adopted
for a smartphone 360° camera, which the users can turn off when
they do not need OmniSense. Manufacturers also use on-device
machine learning inference and on-device processing, where the
data are destroyed without ever leaving the device. This can provide
users with verifiable service guarantees to offer them confidence in
the use of the camera as an on-board only sensor. An alternative
approach is to employ a low-resolution sensor, such as infrared,
thermal or LiDAR cameras, where it is not possible to reconstruct
details of the user’s face and identity. For example, Clarkson [15]
captures a 360° sphere around the user for 100 days, where he
intentionally uses a low-resolution camera with a fisheye lens to
avoid privacy issues. Indeed, he shows that faces are too blurry to
identify, yet it is possible to successfully recognize a lot of context
with the low-resolution images. Hence, privacy with the use of a
camera sensor can be addressed but it remains a constant challenge.

8 LIMITATIONS AND FUTUREWORK
In our implementation, real-time processing is performed on a
desktop PC, and the result is sent back to the mobile device for
displaying to the user. This is largely due to two reasons: i) lack
of API to access raw camera images and ii) limited computing re-
sources on mobile devices. Future hardware improvements, system
optimizations, and gaining API access to the full 360° camera im-
age will ensure OmniSense can run on the mobile device without
requiring offloading to edge devices.

While a custom, single-purpose sensor may be more suitable
for independent tasks such as finger hovering or back-tap, it can
be costly to add a custom sensor for every desired input modality.
In contrast, we demonstrated that with the captured 360° video
(equirectangular format), we can enable all sensing pillars simul-
taneously, including hand, finger, full body and the surrounding
environment. However, for the live demonstration, the lack of cam-
era API access means that we are limited to the screen capture
method, which has an approximately 220° FoV. While this 220° FoV
can cover multiple use cases simultaneously, such as near device
+ bodily interaction (two sensing pillars), or upper body + front
danger detection + environment sensing (three sensing pillars), it
could not enable all sensing simultaneously. This problem will be
solved by gaining API access to the raw image.

Furthermore, there are a wide range of potential applications
that can be enabled by OmniSense that we have yet to explore. So
far, we have only implemented thirteen representative applications,
which barely scratched the surface of all the possibilities. Other
applications such as face/gait authentication, vital signs monitoring
[68], indoor positioning, and autonomous driving are possible but
require further research and development. We will explore such
application areas in future work. While we have demonstrated the
potential of such 360° camera on a mobile device, more engineering
efforts are required to make it practical for real-world usage, with
concerns about battery usage and processing speed.

9 CONCLUSION
We have presented OmniSense, a design space covering a broad
range of input sensing and interaction techniques for mobile de-
vices, enabled by a single, built-in 360° camera. Furthermore, our
prototypes demonstrated how this single sensor is capable of en-
abling various compelling use cases and applications. We con-
ducted a baseline evaluation and preliminary study. We hope this
exploratory research showcased the potential of 360° camera for
enabling novel interaction techniques for improving mobile inter-
action. And along with the workaround method that we provided,
we hope these contributions to knowledge inspire future research
on this topic.
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A COMPARISON BETWEEN FISHEYE AND
CUBEMAP PROJECTION FOR BODY POSE
ESTIMATION

Our observations suggest that existing body pose estimation model
works well with the screen-captured fisheye image without requir-
ing further modification. However, we want to evaluate whether the
undistortion step we applied has any significant advantage, because
if there is none, then it is unnecessary to waste CPU resources on
performing the undistortion.

In order to examine this, we followed the protocol in MeCap [1],
where we collected 144 images consisting of two different postures,
three gestures and two phone-holding orientations, from four par-
ticipants. We asked the participants to vary their posture (standing
and seated), keeping still and make some movements (hand and
leg), and hold the phone in different orientations (tilted towards and
away from the user). From these 144 captured fisheye images, we
generate the undistorted images using cubemap projection, yield-
ing another 144 images. In total, these 288 images were manually
annotated with body keypoints and then compared to OpenPose’s
predicted joints keypoints (Figure 15) to derive error statistics. The
error measurements are normalized by participant’s shoulder width
[1]. We did not compare with perspective and equirectangular for-
mat because the distortion around the edge is too high for any
meaningful comparison.

A.1 Results and Discussion
The results show that, in overall, the measured error difference is
minimal between the two image formats, both with more missing
joints and higher normalized error for the lower body parts, as
shown in Table 3. Especially for the foot (toe and heel), they are
frequently not detected by both OpenPose and human annotators,
as they appear too small and frequently occluded when seated,
which is highly challenging even for a human annotator. For both
types of image formats, as the participants held the phone using
the non-dominant hand (left), the joints on this side have a higher
misalignment error rate due to i) occlusion by the hand holding
the phone and ii) the wrist joint holding the phone is too close
to the camera. In overall, there is no stand-out approach. We can
summarize three key insights.

• In some fisheye images, the body tracking is lost abruptly
for the majority of the body parts. This happens in only
3 out of the 144 images (2%) we collected and we visually
confirmed this by re-running OpenPose over the video file.
This is mainly due to barrel distortion of the fisheye, whereas
cubemap does not suffer from this.

• When the phone is tilted towards users, both formats suffer
from the issues of i) shortened leg and ii) occlusion by hand,
where OpenPose fails to estimate the lower body parts (Fig-
ure 15 (d)) and sometimes confused the gripping hand for
leg. In this case, fisheye is slightly better.

• When users perform a kicking gesture, the leg extends to
the edge of the fisheye image, which suffers from more dis-
tortion and hence causes lost tracking of the leg joints. In
this case, cubemap projection is slightly better. Yet, cubemap
suffers from its own issues, because it was cropped slightly
for undistortion, hence the leg part appears bent and cut
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(a) Seated | Flat (b) Standing | Flat (c) Seated | Tilted (d) Standing | Tilted

Figure 15: Image examples captured for body pose estimation comparison using OpenPose (Top: Fisheye, Bottom: Cubemap).

Table 3: Result of OpenPose vs. ground truth annotation on the two image formats (fisheye vs. cubemap projection). Face
includes Nose, UpperNeck and HeadTop joints. Upper includes Shoulder, Elbow and Wrist joints. Lower includes Hip, Knee and
Ankle joints. Foot includes BigToe, SmallToe and Heel joints.

Fisheye Cubemap

% Captured Mean Normalized
Misalignment Error % Captured Mean Normalized

Misalignment Error

Overall 83.00 0.08 79.86 0.09
Face 98.15 0.07 99.07 0.07

Left Eye/Ear 98.61 0.03 99.31 0.04
Right Eye/Ear 93.06 0.03 93.40 0.06
Left Upper 100.00 0.11 100.00 0.15
Right Upper 97.69 0.06 99.07 0.08
Left Lower 82.64 0.18 75.00 0.16
Right Lower 88.19 0.09 82.64 0.12
Left Foot 39.58 0.04 34.72 0.04
Right Foot 57.64 0.05 46.53 0.05

off when it is being extended. This is especially obvious in
seating posture where joints below the knees are cropped
and hence incorrectly detected by OpenPose (Figure 15 (a)).

To conclude, cubemap projection is able to maintain the correct
size of the body, but when the user extends the leg extremely, it
appears to bend and cropped at the seam between each side of
the cubemap. In contrast, fisheye has better FoV coverage, but is
slightly distorted near the edge, and has an unbalanced body size
(big shoulder, short legs). Overall, in many scenarios that do not
require leg tracking, both fisheye and cubemap work equally well.

Therefore, we can save CPU resources by not performing undis-
tortion. While undistortion helps a little, the main issue is the high
and tilted viewpoint from the camera, as users tend to hold the

phone around chest height during mobile interaction. From this
camera viewpoint, the upper body appears larger and the lower
body appears smaller (Figure 15 (d)). Hence, this is not really a
distortion problem, but a viewpoint problem. MeCap [1] appears to
suffer from the same problem, where the authors did not evaluate
the lower body parts (until the knee joint only).

Another issue is the hand gripping the phone occludes a portion
of the body, causing the upper body to appear to be separated from
the lower body. This confuses the existing body pose estimation
model. We suggest the ideal solution is to train a custom model that
works with this viewpoint (short leg), and deals with distortion
and hand occlusion directly, such as Mo2Cap2 [71], thereby saving
processing cost.
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