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Figure 1: Pantœnna uses an antenna integrated on the bottom of a VR/AR headset (A). The mouth is dielectrically loaded
to the antenna; changes in pose manifest as changes in the antenna’s self-resonance frequency and performance, which we
measure (B). Our machine-learning pipeline predicts 11 3D keypoints for the cheeks, lips and tongue (C). This data can then be
used, for example, to pose an expressive avatar for telepresence uses (D). Our technique sidesteps privacy issues inherent in
camera-based systems, while simultaneously supporting silent facial expressions that audio-based systems cannot detect.

ABSTRACT
Methods for faithfully capturing a user’s holistic pose have imme-
diate uses in AR/VR, ranging from multimodal input to expressive
avatars. Although body-tracking has received the most attention,
the mouth is also of particular importance, given that it is the
channel for both speech and facial expression. In this work, we
describe a new RF-based approach for capturing mouth pose us-
ing an antenna integrated into the underside of a VR/AR headset.
Our approach side-steps privacy issues inherent in camera-based
methods, while simultaneously supporting silent facial expressions
that audio-based methods cannot. Further, compared to bio-sensing
methods such as EMG and EIT, our method requires no contact with
the wearer’s body and can be fully self-contained in the headset, of-
fering a high degree of physical robustness and user practicality. We
detail our implementation along with results from two user studies,
which show a mean 3D error of 2.6 mm for 11 mouth keypoints
across worn sessions without re-calibration.
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1 INTRODUCTION
Virtual and augmented reality (VR/AR) systems able to faithfully
capture their wearer’s holistic body pose will be key to enabling
future telepresence and immersive social avatar experiences. A
crucial component is the pose of the mouth, which people use to
improve the recognition and bandwidth of spoken content [25, 49,
57, 60], as well as to glean emotive cues through facial expressions
[18, 22]. When nonverbal signals such as facial expressions match
situational context and spoken content, it can increase trust, clarity,
and rapport among users [32]. However, if these cues are absent
or mismatched, they can instead generate tension, mistrust, and
confusion.

Considerable work has already been invested into mouth pose
estimation, including worn computing systems such as VR/AR
headsets. Indeed, consumer-oriented systems already exist with
mouth tracking, most notably Meta’s Quest 2 (audio-based) and
Quest Pro (camera-based) headsets [51, 52], as well as VIVE’s Facial
Tracker accessory camera [68]. While already available on the mar-
ket, each of these systems presents one or more downsides of note.
Specifically, camera-driven methods are power- and computation-
ally intensive, and more importantly, raise privacy concerns among
some users. From Meta’s public research [70], we can see that a
headset-integrated camera captures the user’s mouth and upper
body, both of which are intimate areas that most users generally do
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not like to video up-close. Audio-based methods (e.g., [59, 67, 77]
and what Meta uses in its Horizons app [53]) are perhaps less intru-
sive, but only work for speech and not for silent facial expressions.
As we will discuss more in Related Work, researchers have looked
into innumerable bio-sensing methods, but these generally require
controlled contact with a wearer’s skin and per-session calibration.

In this work, we describe a new approach for tracking the pose
of a user’s mouth when wearing a VR/AR headset. Uniquely among
prior methods, it does not use camera or audio data, nor does it
require any instrumentation of the user or sensors on the skin.
Instead, our method uses a thin antenna that can be fully integrated
inside the enclosure of a headset, allowing for compact form factors
that are physically robust. Unlike audio-only methods, we can
track mouth movements resulting from both speech and silent
facial expressions. After reviewing key related work, we detail the
implementation of a proof-of-concept prototype. We used both
RF simulation and real-world experiments to hone our design. To
validate our technique, we ran two user studies: one investigating
the tracking of facial expressions, and the other focusing on spoken
content. The main contributions of Pantœnna are:
• Exploration on a new application area –mouth pose – for impedance
characteristic sensing.

• Successful demonstration of a low-profile antenna design for
mouth pose sensing, allowing for much thinner integrations than
prior work.

• Identifying new modes of operation that were not previously
explored in related HCI work, including the use of dual-mode
antennas, polarization, S21 data, and sensing directivity.

Our many experiments and results not only validate our current
work, but also help inform future work, and in general, raise the
technical sophistication of this technique in HCI.

2 RELATEDWORK
In terms of applications of sensing mouth pose, the main uses
have been in telepresence [21], facial motion capture for film and
games [54], hands-free input [2], and diet monitoring [7, 26, 64].
Our present work does not contribute to new applications of mouth
pose, but rather contributes a new technical approach. As such,
we primarily review other technical methods for mouth pose, bro-
ken down into discrete classification vs. continuous tracking. Im-
portantly, we only discuss on-body systems, and do not include
methods using external infrastructure (such as fixed camera setups).
Additionally, we do not review approaches for tracking other parts
of the face, such as eye gaze direction [62], eyelids [30, 31], eye-
brows [13], nose and ear movements. We conclude this section with
a more focused discussion on prior systems that utilize the same
sensing method. Table 1 provides an overview of key systems.

2.1 On-Body Systems Offering Discrete Mouth
Pose Sensing

Most prior work on mouth pose digitization has focused on discrete
classification of a limited number of key facial poses, such as smile
or open mouth. Innumerable technical methods have been explored,
and so we review this literature according to sensing modality.

Starting first with optical methods, researchers have augmented
glasses [74] and VR headsets [1] with cameras for mouth pose

recognition. In a more privacy-preserving fashion, Masai et al. [44,
45] and Suzuki et al. [66] used photo-reflective sensors to measure
skin deformation caused by facial expressions.

Moving to mechanical vibrations and movements, CanalSense
[2] used barometers in the ear canal to detect changes in air pressure
resulting from face-related movements. IMUs can also be used –
EarBit [7] proposed an ear-bud device with IMUs placed behind
the neck and ear, along with a microphone and proximity sensor
to detect deformation of the ear canal from jaw motion. Similarly,
MyDJ [64] captured chewing signals using a piezoelectric sensor
and an accelerometer. FitByte [6] embedded five IMUs into the
frames of glasses (as well as a proximity sensor and a camera) to
track food and liquid intake. Acoustic methods are also possible,
such as that demonstrated in Interferi [29].

Electromyography (EMG), measuring muscle activations, is an-
other popular way to detect facial gestures [8, 27, 28, 43, 48]. As one
example system, Cha and Im [8] attached EMG electrodes to the
face where a VR headset would rest and classified approximately
nine mouth-related gestures. Similarly, Gruebler and Suzuki [27, 28]
placed electrodes on the side of the face to detect smiles and frowns,
in addition to a neutral class.

There is also a separate and large literature on tongue-based sens-
ing. TongueSee [75] recognizes six tongue gestures using EMG elec-
trodes on the skin. Saponas et al. [63] developed a dental-retainer-
like device that recognized tongue-swiping gestures. Capturing

System
Sensing
Method

Discrete Pose
[# Classes, % Error]

Continuous Pose
[Within-; Across-Session Error]

MeCap [1] Camera ✓[5, 95.6%]
Emoglass [74] Camera ✓[7, 73.0%]
CapGlasses [46] Capacitive ✓[5, 89.6%]
EarfieldSensing [47] Electric field ✓[5, 90%]
EarBit [7] Inertial ✓[2, 93%]
FitByte [6] Inertial ✓[2, 83.1%]
MyDJ [64] Piezo + IMU ✓[2, 98.4%]
CanalSense [2] Barometer ✓[4, 87.5%]
Masai et al. [44, 45] Photo Reflective ✓[8, 78.1%]
Cha et al. [8] EMG ✓[9, 85.0%]
Gruebler/Suzuki [27, 28] EMG ✓[3, 85.0%] ✓(smile intensity)
Interferi [29] Acoustic ✓[5, 68.4%] ✓(mouth open size)
VIVE Facial Tracker [68] Camera ✓
Chai et al. [9] Camera ✓
Wei et al. [70] Camera ✓
NeckFace [10] Camera ✓
C-Face [11] Camera ✓[8, 88.6%] ✓[1.4 mm; 2.8 mm]
Li et al. [39] Strain + Camera ✓
Luo et al. [43] EMG ✓[5, 86.3%] ✓
BioFace-3D [72] EMG + EOG ✓[2.4 mm; - ]
Richard et al. [59] Speech audio ✓
EarIO [40] Acoustic ✓
Pantœnna (this work) Antenna imp. ✓[10, 91.1%] ✓[1.8 mm; 2.6 mm]

Table 1: Overview of prior systems that are both worn and
sense the external pose of the mouth. When possible, we
include the number of recognized classes for discrete pose
systems (sometimes including facial expressions that involve
the mouth) and tracking accuracy for continuous pose sys-
tems. In some cases, we had to infer results and estimate
values from figures. We further caution there are many sys-
tem and evaluation specifics (different keypoints, pose sets,
train/test details, etc.) that make direct comparison challeng-
ing. Please refer to individual papers for important details.
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tongue movement has also been exploited for silent speech inter-
faces, such as SilentSpeller [36], which used electropalatography
(EPG) for text entry. Using seven magnets attached to the tongue,
lips, and teeth, and two magnetometers on the cheek, Fagan et al.
[24] enabled recognition of 13 phonemes and 9 words. The multi-
modal sensing approach in Sahni et al. [61] used one magnet on
the tongue combined with optical ear canal deformation.

Finally, and most similar to Pantœnna, are electrical mouth pose
sensing methods. EarfieldSensing [47] uses electrodes placed inside
the ear canal to detect both electric field changes and physical
deformations resulting from mouth movements. Even more similar
to Pantœnna is work by Rantanen et al. [58], which used non-
contact capacitive sensors to measure proximity to the skin. The
same method is used in CapGlasses [46], which achieves a fairly
unobtrusive glasses-like design to which we also aspire.

2.2 On-Body Systems Offering Continuous
Mouth Pose Sensing

Considerablymore challenging than discrete classification of mouth
state is continuous tracking of the mouth shape (i.e., mouth pose).
Fewer approaches have been successful in this endeavor, which
we now review. Please also refer to [71] for a recent survey of
techniques, as well as Table 1 for an overview of highly relevant
systems.

A common and highly-successful approach is to use one or more
worn cameras operating in front of the face [39, 52, 56, 70]. Such
systems are so accurate that we use VIVE’s Facial Tracking camera
accessory [68] as ground truth in our user studies. More advanced
is Li et al. [39], which employed an RGB-D camera combined with
strain gauges to better predict facial movements occluded by a head-
set. NeckFace [10] predicts 3D keypoints for eight facial expressions
using a neck-worn camera. C-Face [11] uses two cameras located
on the sides of the head to capture face contour deformations that
occur during different facial expressions. As noted in our introduc-
tion, while these camera-based methods are highly capable, they
also tend to be fairly power-hungry and raise privacy concerns
with users.

Moving beyond cameras, another successful approach has been
to use phonetic sounds in a user’s speech to infer mouth pose
[23, 59, 67, 77]. There are now commercial systems utilizing this
approach, most notably the LipSync SDK [51] used in Meta’s Quest
product lineup. A significant drawback to this approach, however,
is that silent facial expressions cannot be detected.

There are also a handful of mouth pose systems utilizing bio-
sensing means. EMG is perhaps the most common — for example,
Luo et al. [43] and Mavridou et al. [48] both demonstrated a VR
headset with EMG electrodes located around the face pad for facial
tracking. BioFace-3D [72] combines EMG and EOG (electrooculog-
raphy) sensors into a wrap-around head sensor design. Interferi
[29], also mentioned in the section above, used acoustic interferome-
try to estimate the continuous intensity of a smile. While promising,
no other facial poses were investigated. Lastly, EarIO [40] emits
audio from headphones towards users’ checks, capturing distinctive
reflections from changing face geometry to enable continuous pose
tracking. Importantly, all of the above methods require consistent

contact with the user and generally do not work well across worn
sessions without recalibration.

In summary, all mouth pose methods suffer from one or more
downsides, which makes this research problem very much an open
question. To this literature, Pantœnna contributes a new sensing
approach with a unique set of strengths and weaknesses, as we
will discuss. It may also be that a multimodal approach will be
key to making progress in this domain, and the compact nature of
Pantœnna makes it a promising technique for future work.

2.3 Antenna Impedance Characteristic Sensing
Our approach is built around antenna impedance characteristic
sensing, a technique that has been explored in prior work. First,
Xu et al. [73] enabled four-finger gesture classification using an an-
tenna located on the wrist. Li et al. [41] used a body-worn monopole
antenna to classify human activities. In the HCI domain, AtaTouch
[34] explored a V-shaped antenna embedded in a VR controller to
precisely segment finger pinch events. More recently, this approach
was used in EtherPose [33] for sensing continuous hand pose. Our
work is directly inspired by EtherPose, and we both advance the
technique and apply it to a new domain.

To summarize the overall approach, dielectrics (e.g., human tis-
sue) close to the antenna are loaded as a component of the antenna
and affect its reference ground plane, and consequently affect the
antenna’s characteristic impedance and radiation performance at
a given reference frequency. Geometry changes in the dielectric
(e.g., mouth movement) thus vary antenna performance and can
be measured as S-parameters. In comparison to EtherPose [33], we
make several advances and contributions. First, we designed and
validated a new and more advanced low-profile antenna topology.
Whereas EtherPose’s used two volumetrically-large cloverleaf an-
tennas, Pantœnna uses a sub-millimeter low-profile cross-polarized
antenna system, which is far more practical for integration into
consumer electronics. Second, we newly utilize S21 data and quan-
tify the performance gain over using S11 signal alone. Third, we
utilize better sensing hardware, unlocking higher framerates and
resolution. Fourth, we explore a new application area for antenna
impedance characteristic sensing —mouth pose — underscoring the
potential generality of the technique. Indeed, much like capacitive
sensing, we believe there is not just one application, but rather a
significant range of potential uses waiting to be explored by the
HCI community.

3 ANTENNA DESIGN
Before we could create a prototype system, we needed to better
understand several important design parameters of our antenna.
We now briefly describe our iterative design process.

3.1 Test Setup
We primarily used electromagnetic simulation software (CST Mi-
crowave Studio [17]) to make antenna system topology design
decisions. To test the S-parameter response for each mouth pose,
we built five representative mouth poses using a 3D human phan-
tom head: closed mouth, open mouth, smile, smile with teeth, and
tongue out open (Figure 2). We used commercial 3D EM phantoms
for the head, lips, teeth, gum, and tongue. The VR headset mirrored
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Figure 2: An EMphantomheadwearing a VRheadset express-
ing five representative mouth poses. The antenna is located
beneath the headset. See also Figure 7 for illustrative photos
of these mouth poses.

the dimensions of an Oculus Quest 2 [50], though the electronics in-
side were not modeled. Each part was assigned material properties
found in SPEAG [65], which emulates the response to electromag-
netic radiation. Lossy copper material properties were used for all
antennas. The simulated antenna was located on the bottom side
of the headset (seen in Figure 5). All of our simulations were run in
a range from 500 MHz to 3 GHz.

To minimize the mismatch loss, we implemented an impedance
matching network for each antenna at a predefined frequency of
interest, where the magnitude of S11 is around -30 dB. Despite
our efforts to match the simulation to the real world, there are
limitations. For example, we did not model the inside electronics
of the headset. Simplified human tissues and mouth shape on the
phantom are also not identical to actual humans. Nonetheless, there
were strong correlations between real-world and simulated results
that allowed us to leverage computer simulations to expedite our
iterative design process.

3.2 Antenna Topology
Our antenna is designed to minimize interference from the hands
and environment with a directional radiation pattern. While there
are many directional designs, we selected the slot antenna for its
low-profile and simple structure (Figures 3, 4, and 5). To verify its
performance, we simulated the signal response on five mouth poses.
The design and its specific dimensions can be seen in Figure 3. The
feed line is located 10 mm from the end of the slot.

Figure 3 shows the antenna impedance characteristic for four
mouth poses. For illustration only, we use the smile with teethmouth
pose as a baseline and subtract all other mouth pose signals from
this signal. We probed two center frequencies, 1.56 and 2.80 GHz
using different impedancematching networks. For both frequencies,
we were able to verify that both S11 magnitude and phase were
responding to mouth geometry changes, yet the amount of signal
difference varied. At 2.8 GHz, the signal change for the tongue out
open gesture is very strong (∼6.6 dB, ∼30°), while the change in
other mouth poses was around 1.2 dB. Conversely, at 1.56 GHz,
all mouth poses exhibited significant and distinctive changes (∼4.5
dB, ∼30°), except for the smile pose (0.8 dB and 9°). Regardless, the
antenna design offered excellent signals at both frequencies and

so we moved on to investigating other parameters, leaving a more
thorough investigation of operating frequency until later.

3.3 Two-Port Configuration and Polarization
Next, we considered a two-antenna design, which not only allows
two antennas to measure their reflected signal (S11 and S22), but
also measure how much signal is transmitted from one antenna to
the other (S21 and S12). To accommodate two antennas, we folded
a slot antenna in half so that we could include a second antenna
on the same copper ground plane. Slot antenna polarization is
determined by the orientation of the electric field across the slot,
and thus we could also vary polarization of the two antennas. We
tested two obvious layouts, illustrated in Figure 4, both with a
center frequency of 2.8 GHz. In the co-polarized configuration, the
antennas are the same shape and orientation, placed next to each
other. In the cross-polarized configuration, the antenna at port 2
and its feed line are rotated at 90°, but the location of the feed line
is consistent with the co-polar configuration (Figure 4, bottom).

Overall, we observed that the cross-polarized design was sig-
nificantly more reactive to mouth pose changes, especially in the
S21/S12 signal. Also, it is not surprising that having two antenna
polarizations allows each antenna to be receptive to different mouth
pose features (as opposed to having two identical, symmetrically-
placed antennas). In general, co-polarized antennas have lower
isolation, and therefore are less sensitive to changes of the ground
plane due to changes in mouth shape. Conversely, better-isolated
antennas (e.g., cross-polarized) have larger isolation dynamic range,
and thus are more responsive to different mouth poses. For these
reasons, we selected the cross-polarized design.

Figure 3: Simulation results of an antenna with a single
straight slot (top, in yellow). Two center frequencies were
tested, using different impedance matching networks. Each
colored plot is the signal difference between a mouth pose
and smile with teeth (see Figure 2).
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Figure 4: Antennas with two different polarization configu-
rations were simulated (left, in yellow). Exterior dimensions
were 40×110 mm. Each configuration includes two ports, and
thus three signal combinations (S11, S21/S12, S22) are re-
ported. Each colored plot is the signal difference between a
mouth pose and smile with teeth (see Figure 2).

3.4 Operating Frequency
As a final exploration, we investigated the effect of operating fre-
quency. For this, we used a variant of the cross-polarized antenna
identified in the prior section. Specifically, we placed the antenna
at port 1 in the center, with the second antenna shifted to the
right (Figure 6). We call this design a Dual Asymmetric Enhanced
Half-Wavelength Antenna. We found this arrangement could better
capture asymmetric mouth movements, confirmed in both sim-
ulated and real-world experiments. We also angled the antenna
slightly, using a 3D-printed wedge, to improve its directionality
towards the mouth.

We considered four center frequencies of interest: 1.5, 1.97, 2.5,
and 2.8 GHz. To tune the operating frequency, we used a different
impedance matching network. In the simulation, we injected signal

at port 1 (andmeasured S11), and port 2was used only formeasuring
(S21). Overall, the simulation results show better discrimination
at higher frequencies (Figure 5). At 1.5 GHz, there is very little
signal variation across mouth poses. S21 starts to yield information
at around 1.97 GHz, but S11 is largely unchanged. Both 2.5 and
2.8 GHz offer useful signals in both S11 and S21, with 2.5 GHz
appearing to be a sweet spot, and thus we selected this as our
operating frequency moving forward.

4 PANTŒNNA SYSTEM
The experiments in the previous sections informed the design of a
proof-of-concept headset, seen in Figure 6. We now describe the
major hardware and software components of our prototype, which
we use in our subsequent user study.

4.1 Headset
As a proof-of-concept platform, we selected the popular Meta
Quest 2 [50]. Although this headset can operate in an untethered
fashion, we tether it to an M1 MacBook Pro 16" (2021) to simplify
development and evaluation. In Future Work, we discuss avenues
for commercial integration.

4.2 Antenna
We affixed our Dual Asymmetric Enhanced Half-Wavelength An-
tenna design to the bottom of the headset using a low-profile
3D-printed wedge (increasing from 0 to 8.5 mm in height), an-
gled slightly towards the face. This design is cross-polarized – the
vertically-polarized U-shaped slot antenna is located at the center,
while the second horizontally-polarized antenna is placed on the
right, 10 mm from the edge of the other antenna (see Figure 6).
The antenna slots are 60 mm in length and 5 mm in width. To re-
duce antenna footprint, each slot is physically folded in half-length,
maintaining the same electrical length as a straightened slot.

To fabricate this antenna, we first laser-cut our design out of a
1 mm acrylic sheet. We then overlaid this with copper tape and
removed the voids with an exacto-knife. An SMA (Sub-Miniature
Version A) coaxial cable was soldered to each antenna. The outer-
conductor mesh of the coaxial cable is soldered to a ground plane
formed by the copper tape, while the feed line is soldered across
the antenna slot.

The self-resonance of this antenna design is 2.1 GHz with -23
dB of S11 magnitude. To shift the antenna’s operating frequency
closer to our target frequency of 2.5 GHz (identified in Section 3.4),
we used an impedance matching network (designed in simulation;
shown in Figure 6). Specifically, we connect a parallel inductor (30
nH) between the antenna feed line and ground, and a capacitor
(0.6 pF) is serially connected to the port and feed line. While the
simulation result of this matching network yields -27 dB of S11
magnitude at 2.52 GHz self-resonance, the actual antenna prototype
has a self-resonance of 2.64 GHz and -22 dB of S11 magnitude.

4.3 Analog Front End
For measuring S11 and S21 parameters, we use a $230 NanoVNA V2
Plus4 [55], which is attached to the front of our headset prototype
(Figure 6). As a brief primer, the S11 parameter is power reflected
back to a transmitting antenna, while S21 is the transmitted power



UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Kim and Harrison

Figure 5: Four operating frequencies were tested using our final antenna design (placed on EM phantom head, far left; photo of
the antenna in Figure 6).

between a first antenna and a second antenna. We configure our
VNA to measure S11 and S21 from 2.2 GHz to 3.4 GHz, calculating
return loss magnitude and phase shift. This particular VNA model
is not able to measure S22, though other VNAs can and the signal is
likely to be valuable. Nonetheless, the combined information from
S11 and S21 is still sufficient to estimate mouth poses. We note
this “nano” VNA is still a sophisticated measurement device. In a
commercial implementation, a more basic, inexpensive, and spe-
cialized single-chipset integrated VNA design could be employed,
and integrated onto the motherboard of the headset.

In piloting, we found that facial expressions did not require
high framerates, but did benefit from a higher-resolution frequency
sweep to better distinguish among diversemouth poses. In response,
we sample 61 points from 2.2 to 3.4 GHz (i.e., 20 MHz increments)
at 5 FPS. This yields 61 S11 return loss magnitudes, 61 S11 phase
shifts, 61 S21 return loss magnitudes, and 61 S11 phase shifts, for a
total of 244 values, which we pass to our machine learning pipeline.
Conversely, mouth movements during speech are more rapid, but
require less resolution to capture the gestalt of the mouth moving.
In response, we sample only 31 points from 2.2 and 3.4 GHz (i.e.,
40 MHz increments), yielding 124 values at a faster 8.5 FPS. We
selected this sample rate based on the fact that a typical speaking

Figure 6: Labeled photo of our Pantœnna prototype showing
our final Dual Asymmetric Enhanced Half-Wavelength An-
tenna design.

rate for English is roughly 4 syllables per second [16]. 8.5 FPS is
roughly twice this frequency and should be sufficient to capture 4
Hz movements.

Lastly, as our prototype is hand built, there are small variances
in the SMA cables, connectors, fixed dielectrics (headset, support
wedge), and indeed all of the components. Even in a mass-produced
product, there will be small variances that can affect the signal
sensitivity. For these reasons, our real-world signals generally do
not immediately match our idealized computational simulations
(i.e., a perfect VNA, perfect connections, etc.). Instead, we perform
a one-time automatic calibration of our VNA affixed to the headset
and connected to our antenna, which would happen at the factory
in a commercial setting.

4.4 Wireless Operation
As already noted, we tethered our VNA to a laptop over USB to
simplify control and power. However, both the Quest 2 headset and
VNA can be made battery-powered and wireless, which is what we
demonstrate in our Figures and several parts of our Video Figure.
More specifically, we run the Quest 2 using its AirLink mode and
our VNA is connected and controlled by a Raspberry Pi Zero 2 W
powered by a 4.44 Wh battery (Figure 6), which provides several
hours of runtime. In this wireless configuration, data is streamed
by the Raspberry Pi to a laptop over WiFi for e.g., recording or
machine learning.

4.5 Machine Learning Pipeline
Our mouth pose estimation model runs on the aforementioned
laptop, though we note in a commercial implementation that our
lightweight model could easily run on the processor of the Meta
Quest 2.

As explained in Section 2.3, the outputs of our sensing pipeline
are four vectors: S11 return loss magnitudes, S11 phase shifts, S21
return loss magnitudes, and S21 phase shifts. Each of these vectors
is either 61 or 31 values in length, for a total of 244 values for sensing
facial expression or 144 values for sensing speech movements. In
addition to using these raw measurements as machine learning
features, we perform additional featurization. Specifically, for each
vector, we compute the first derivative of the series (61 or 31 features
× 4), the difference from the previous frame of data (60 or 30 ×
4), standard deviation (1 feature × 4), the coefficients from a 3rd
order polynomial fit (4 features × 4), and subtraction of S11 and
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Figure 7: The ten facial expressions requested in our user study (top row) and example output of an avatar (middle row) and
mouth keypoints (bottom row; red for lip keypoints, green for cheek, and blue for tongue tip). Left-most mouth keypoints
labeled as key for Figure 8.

S21 vectors (61 or 31 features × 2). This yields a total of 870 or 450
features for machine learning.

For continuous mouth pose estimation, we use SciKit Learn’s
Extra Tree Regressor [38] with 300 estimators. The outputs of this
model are 11 3D mouth keypoints [4, 5], seen in Figures 1 & 7.
In our evaluation, we also report expression classification results
to facilitate comparison of our system to prior works performing
only discrete classification. For this, we use SciKit Learn’s Extra
Trees Classifier [37] (number of estimators 300; default parameters
otherwise) using the same feature vectors.

4.6 Visualization
In addition to mouth keypoints, we also use rigged 3D heads in
Unity (Shieh avatar v2 in Figures 1 & 7) to visualize our tracking
results. This head is controlled by 37 SRanipal blendshapes [19],
which is also the native output of the VIVE Face Tracker we use
for ground truth data capture (discussed later). Please also refer to
our Video Figure.

5 EVALUATION
We recruited 12 participants (mean age 26.7, min 20, max 33; 7
identified as female, 5 as male) for a 90-minute user study that paid
$30. The width of each participant’s mouth (lip corner to corner)
was recorded in the closed mouth pose (mean=49.4 mm, SD=3.9),
which we used to scale participants’ 3D head model in our software.

We captured two different datasets to evaluate our system’s
accuracy. First we capture facial expressions, which tend to be more
exaggerated movements held for brief periods of time. Second are
mouth movements from speech, which tend to be more continuous
and rapid, but smaller in scale. As such, these two datasets are
highly complementary. We now describe the details of our study
procedure and apparatus.

5.1 Apparatus & Ground Truth Data Capture
Participants wore our proof-of-concept headset, which was tethered
to a laptop for experimental control. In VR, participants were shown
a study interface that provided visual instructions. During data

collection, neither the experimenter nor participants were allowed
to view sensor signals or any tracking output, to prevent biasing
their behavior. For the duration of the study, participants were
seated.

In order to benchmark the accuracy of our system, we needed to
ascertain a ground truth mouth pose. The most accurate technolo-
gies available today are camera-based systems, which keypoint a
high-resolution video stream of a user’s mouth. For this, we use
VIVE’s Mouth Tracker camera [68], which can be added to any
VR headset as an accessory. The accompanying SDK outputs 37
blendshapes [19] that we use to pose a head and extract keypoints,
and which are scaled to match the measurement of our participants.
The study apparatus, along with example avatar (middle row) and
mouth keypoint output (bottom row) can be seen in Figure 7. We
verified the VIVE camera had minimal effect on our system’s sens-
ing. Before data collection began, participants mimicked several
mouth poses and said the words “Human-Computer Interaction”
to confirm the ground truth camera’s performance, and the experi-
menter adjusted the camera angle as needed.

5.2 Facial Expression Procedure
We selected 10 mouth-centric facial expressions (Figure 7) drawn
from prior work [10–12, 42]. Participants were shown a facial ex-
pression in the VR interface and asked to match the mouth pose.
Once the requested facial expression was assumed, the experi-
menter used a key on the laptop to record the timestamp, which
we use for later assessment of discrete pose classification accuracy.
One round of data collection consisted of all 10 facial expressions
being requested in a random sequence. Five rounds formed one
session of data capture (i.e., 5 rounds of 10 facial expressions).

Importantly, throughout this procedure, synchronized sensor and
ground truth data were captured continuously (5 FPS in this study).
Such a procedure helps to capture a wide variety of intermediate
poses between the ten terminal facial expressions (10! pairwise
combinations). In total, ten sessions of data were captured. After
each sessionwas completed, users were asked to remove the headset
and take a brief break. Once ready, they re-wore the headset. This
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Figure 8: Continuous mouth pose tracking results, reported
in mean per-joint position error (MPJPE). Mouth keypoint
labels in Figure 7.

adds natural variance to sensor position as is a crucial procedural
step for any worn system evaluation.

This procedure yielded 63,480 data points for continuous pose
tracking (representing roughly 3.5 hours of data). Of these, 6000
data points had labeled classes (12 participants × 10 worn sessions
× 5 rounds × 10 mouth poses) which we use to evaluate discrete
mouth pose classification accuracy.

5.3 Speech Movement Procedure
The second stage of data collection focused on mouth movements
resulting from speech, which tend to be more rapidly changing than
facial expressions. As before, participants saw visual prompts in
VR: this time 10 random sentences, shown one at a time, randomly
drawn from the CommonVoice dataset [3]. Each worn session con-
tained 5 rounds of 10 random sentences (i.e., 50 sentence utterances
per session). Same as earlier, we recorded synchronized sensor and
ground truth data. Also matching the previous procedure, partic-
ipants took off the headset between sessions, adding additional
variability and realism to the data.

In total, 5 sessions of data were collected per participant, yielding
174,764 data points for continuous mouth pose tracking (represent-
ing roughly 5.7 hours of data). No discrete mouth pose data was
collected in this procedure.

6 RESULTS
Using our study data, we explored three training procedures that
emulate different user calibration and training schemes. An overview
of results can be found in Figures 8 and 9.

6.1 Within-Worn-Session Accuracy
Worn bio-sensing systems (e.g., EMG [35], EIT [76]) generally re-
quire re-calibration each time the sensor is worn in order to provide
usable accuracies. This obviously offers the highest accuracy, but
comes at a significant cost to the user experience, and generally
should be avoided. However, we report these results so as to enable

Figure 9: Our system’s primary mode is continuous mouth
pose estimation. However, to facilitate comparison to prior
work, we also computed discrete pose classification accuracy.
The classification accuracy is 96.3% for within-worn-session
and 91.1% for across-worn-session. We also tested across-user
(i.e., “out of the box”) accuracy, which was 40.0%.

comparison to prior work using this “within-worn-session” pro-
cedure. As described above, each of our worn sessions (for both
facial expression and speech movements) contained 5 rounds of
data collection. This means we can use all combinations of 4 rounds
for training and 1 round for testing to measure within-worn-session
accuracy. Further, we can do this for all worn sessions collected, av-
eraging the results to produce a more reliable estimate of accuracy.

Overall, we found a within-worn-session tracking accuracy of
1.8 mm (SD=1.5). For our facial expression study data, tracking
accuracy was 1.9 mm with a discrete expression classification accu-
racy of 96.3% (SD=1.8). For our speech movement data, we found
an accuracy of 1.7 mm (SD=1.3). See also Figures 8 and 9.

6.2 Across-Worn-Session Accuracy
Given the variability of human mouth morphology, and even how
we perform different expressions and move our mouths in speech,
it is not unreasonable to imagine that users will have to perform
at least some system calibration (especially non-camera methods).
To simulate this, we train our model on all-but-one-session of a
user’s data, using a hold-out round for testing. This procedure is
done for all worn session combinations, with results combined. As
a reminder, participants removed the headset between sessions, so
this simulates calibrated, but across-worn-session use.

Combining both datasets, we found an across-session tracking ac-
curacy of 2.6 mm (SD=2.0). Looking specifically at facial expressions,
tracking accuracy was 2.8 mm (SD=2.3) with a discrete expression
classification accuracy of 91.1% (SD=3.4). For our speech movement
data, we found an accuracy of 2.3 mm (SD=1.6). See also Figures 8
and 9.

6.3 Across-User Accuracy
Ideally, users would not have to provide any calibration data, and
could simply wear a headset and mouth tracking would work “out
of the box”. This is the most challenging train/test arrangement,
as human mouth morphology varies tremendously, as does how
we express our emotions and speak. For this reason, we believe at
least some calibration data would be needed in a consumer system.
Nonetheless, we report across-user accuracy by training our models
on data from all-but-one participant, and then using a hold-out
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participant for testing. We can do this for all combinations of users
(all combinations, results average).

Across all sessions, we found our system had an overall tracking
accuracy of 4.9 mm (SD=3.3). On our facial expression data, tracking
accuracy was 6.0 mm (SD=3.9) with discrete expression classifica-
tion accuracy of 40% (SD=14.9%). For our speech movement data,
we found an accuracy of 3.8 mm (SD=2.6). See also Figures 8 and 9.

6.4 User Identification
We also used our study data to test an additional, orthogonal feature
of our system: user identification. VR headsets are often shared
within a family or group of colleagues or friends, and thus a sys-
tem that can recognize its current user among a small group has
great value. For instance, it could load personalized content (i.e.,
system settings, game progress, interpupillary distance) or provide
automatic content controls for children.

As an initial test of this potential feature, we used our 12 partici-
pants as a simulated "family". We trained the model using all-but-
one common session of their data (e.g., all participants’ sessions
1-9 were used for training, and all session 10 data was used for
testing. Then all sessions 1-8 and 10 were used for training, and all
participants’ session 9 was used for testing, and so on). Class labels
were Participant_1 through Participant_12. The model is deemed
correct if it correctly predicts the family member (i.e., study partici-
pant), and incorrect if it guesses any of the other 11 possible family
members. In this simulated family, our system was 99.5% accurate
(SD=0.07) at recognizing the participant, significantly exceeding
our expectations and meriting future work.

7 DISCUSSION
7.1 Comparison to Prior Work
Table 1 provides an overview of prior work, both discrete mouth
pose and continuous tracking systems. A good point of comparison
is the recently published C-Face [11] system, which uses ear-worn
cameras to capture side-of-face contour changes. Using this arrange-
ment, C-Face offers 2.8 mm of continuous mouth pose tracking
accuracy across worn sessions (the same as Pantœnna’s 2.8mm er-
ror). In comparison to C-Face, Pantœnna seems to excel at smaller
mouth movements. For example, smile vs. smile with teeth does
not significantly move the cheeks. C-Face [11] demonstrates 87%
classification accuracy for smile and 84% classification accuracy
for smile with teeth (89% classification accuracy over nine facial
expressions in total). Pantœnna, on the other hand, is 96.7% and
98.3% accurate on smile and smile with teeth classes, respectively
(and 96.3% accurate on ten facial expressions overall).

We can also compare Pantœnna to other worn, non-camera-
based systems. These systems generally report within-worn-session
accuracy, so we use this as a comparative metric. We note that
such comparisons are only approximate as different participants,
pose sets, facial landmarks, and procedures were used. Pantœnna’s
within-worn-session accuracy was 1.8 mm (SD=1.5), and 1.7 mm
specifically for our speech condition. We can compare this result to
BioFace-3D, [72] which used EMG and EOG signals to achieve 2.39
mm of mouth tracking error in a similar speech task. For within-
session mouth pose classification, the acoustic-driven Interferi [29]
system achieved 91.1% accuracy on five mouth poses, while our

system demonstrates 96.3% accuracy over tenmouth poses. Interferi
[29] also reported across-worn-session accuracy, which dropped
to 68.4%. Pantœnna’s accuracy drops from 96.3% within-session to
91.1% across-session.

7.2 Privacy
As noted in our Introduction and Related Work sections, camera-
based methods, currently the most popular and successful approach,
raise significant privacy issues. First off, the high-resolution im-
agery of the mouth permits the identification of individuals (not
only from distinctive face and mouth morphology, but also dental
biometrics). Second, the field of view of many vision-based mouth
pose systems includes the user’s upper torso, capturing an oblique
downward view of a user’s breasts, which is intrusive. Third, other
people and sensitive content can be inadvertently captured in the
video stream, such as financial and medical documents.

Ideally, no visual data would be captured, and in this regard,
Pantœnna makes a significant contribution. That said, Pantœnna
does not fully alleviate privacy concerns. For instance, as we evalu-
ated, Pantœnna can be used to recognize users within small groups
(though not with larger populations). It may also be that with
enough data, the facial geometry of a user could be reconstructed.
Finally, tracking people’s mouth and lips could allow for the recon-
struction of speech content without audio. Of course, camera-based
systems make such attacks considerably easier.

7.3 Cost
Our antenna ismade from acrylic and copper tape and has negligible
cost. In a commercial system, this would almost certainly be a
low-cost PCB antenna, perhaps integrated onto an existing board.
Almost all of our prototype’s cost comes from a $230 NanoVNA
V2 Plus4. This is a sophisticated measurement instrument with
capabilities far exceeding our needs. Inexpensive VNAs, such as the
NanoVNA-H, can be found at popular online retailers for under $50.
This device includes a 2.8" color touchscreen, enclosure, battery, and
USB-C connectivity — the actual VNA components likely cost under
$20. We also note there continue to be significant advances in single
chip VNAs [14, 15, 20], which could allow for exceptionally compact
implementations. Finally, it may also be possible to avoid using a
full-featured VNA and instead used a fixed set of RF frequencies
with dedicated hardware.

8 LIMITATIONS & FUTUREWORK
There are several avenues of future work, which we now briefly
discuss. First and foremost among these is the continued reduction
in the size of our technique. Our current design uses a small wedge
to better orient our antenna’s radiation pattern towards the mouth,
but which is larger than the antenna itself. In the future, it may be
possible to use a different antenna topology or perhaps even an
antenna array to beamform, further reducing the volume of our
technique and potentially permitting integrations into lightweight,
glasses-like form factors. Additionally, although our antenna’s di-
rectivity helped to reduce interference from the environment and
the user’s hands, it is still susceptible. In particular, dropping the
chin down to the chest detrimentally alters the signal and reduces
accuracy (other neck angles appear to be less problematic). We also
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note that the VNA we used was not capable of capturing S22 data,
even though it appears to be a useful and information-bearing sig-
nal. It is highly probable that future iterations capable of capturing
S22 data would achieve even higher accuracies.

Our prototype system used two separate machine learning mod-
els, one for facial expression and another for speech-related mouth
movements. This was due to the limited sampling rate of our VNA
(discussed in Section 4.3), forcing us to trade off resolution vs. fram-
erate for different use cases. However, importantly, this is not an
innate limitation of our technique. Z-Ring [69], for example, utilized
a different low-cost VNA and achieved 30 FPS. Transitioning from
a general-purpose, wide-bandwidth VNA to specialized hardware
could provide an order-of-magnitude improvement in framerate.
Even still, it may be useful to have separate mouth pose models for
expressions and speech. These could be automatically toggled with,
for example, the loudness of audio input.

Finally, we note that the number of participants in our user study
is relatively small and tends toward a younger demographic, which
is not representative of the whole population. That said, while faces
do change with age, the most significant effects we leverage are
morphological in nature – e.g., the lips separating to reveal the
teeth during a smile, the jaw opening to say “ah”, or the tongue
sticking out in front of the lips. These are gross facial geometry
differences that are true across all ages, and which manifest in our
sensor signal.

9 CONCLUSION
Wehave presented ourwork on Pantœnna, a new continuousmouth
pose sensing method. By not using either cameras or microphones,
our approach sidesteps significant issues in privacy, while still
offering substantial facial expressivity. We explored both facial ex-
pressions and mouth movements during speech. Our user study
revealed a mean 3D Euclidean error of 2.6 mm across worn sessions,
a train/test condition that most bio-sensing systems find challeng-
ing (due to their sensitivity to worn placement). While future work
remains, our present Pantœnna proof of concept demonstrates a
unique set of pros and cons, which could be combined with other
approaches in a multimodal fashion.
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